Check for
Updates

The Impact of Group Discussion and Formation on Student
Performance: An Experience Report in a Large CS1 Course

Tong Wu Xiaohang Tang Sam Wong
Virginia Tech Virginia Tech University of Washington
Blacksburg, VA, USA Blacksburg, VA, USA Seattle, WA, USA
tongw@vt.edu xiaohangtang@vt.edu samw627 @uw.edu
Xi Chen Clifford A. Shaffer Yan Chen
University of Virginia Virginia Tech Virginia Tech
Charlottesville, VA, USA Blacksburg, VA, USA Blacksburg, VA, USA
xic@vt.edu shaffer@cs.vt.edu ych@vt.edu

ABSTRACT

Programming instructors often conduct collaborative learning ac-
tivities, such as Peer Instruction (PI), to enhance student moti-
vation, engagement, and learning gains. However, the impact of
group discussion and formation mechanisms on student perfor-
mance remains unclear. To investigate this, we conducted an 11-
session experiment in a large, in-person CS1 course. We employed
both random and expertise-balanced grouping methods to exam-
ine the efficacy of different group mechanisms and the impact of
expert students’ presence on collaborative learning. Our observa-
tions revealed complex dynamics within the collaborative learning
environment. Among 255 groups, 146 actively engaged in discus-
sions, with 96 of these groups demonstrating improvement for
poor-performing students. Interestingly, our analysis revealed that
different grouping methods (expertise-balanced or random) did not
significantly influence discussion engagement or poor-performing
students’ improvement. In our deeper qualitative analysis, we found
that struggling students often derived benefits from interactions
with expert peers, but this positive effect was not consistent across
all groups. We identified challenges that expert students face in peer
instruction interactions, highlighting the complexity of leveraging
expertise within group discussions.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS
Collaborative learning; Peer instruction; Group mechanisms

ACM Reference Format:

Tong Wu, Xiaohang Tang, Sam Wong, Xi Chen, Clifford A. Shaffer, and Yan
Chen. 2025. The Impact of Group Discussion and Formation on Student
Performance: An Experience Report in a Large CS1 Course. In Proceedings
of the 56th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701973

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0531-1/25/02.
https://doi.org/10.1145/3641554.3701973

This work is licensed under a Creative Commons Attribution
International 4.0 License.

1260

1 INTRODUCTION

Collaborative learning has become an integral component of com-
puter science education, particularly in introductory programming
courses (CS1) [11]. This approach actively engages students in
working together, learning new concepts, solving problems, and
providing peer feedback. Programming instructors often employ
various collaborative learning activities, such as Peer Instruction [9],
pair programming [10], and project-based work, to enhance stu-
dents’ motivation, engagement, and learning outcomes [12]. Among
these, Peer Instruction (PI) has gained significant traction as an
effective strategy where students individually respond to concep-
tual questions, discuss with peers, and then revise their answers,
leading to improved failure rates, retention, and exam performance
in Computer Science [15]. Several in-class coding exercise tools has
developed to assist instructors in facilitating collaborative learning
in programming classrooms. For example, PuzzleMe [18] enabled
real-time peer discussions, balancing code and expertise diversity
among students. VizPI [13] supports in-class Peer Instruction by
allowing instructors to distribute coding exercises during lectures
for synchronous student participation. Grofle and Renkl’s work
has shown that grouping students with different solutions has
been effective in improving learning outcomes in mathematics [5].
However, the effectiveness of these discussions and different group
formations on student coding performance remain areas of active
research.

In this paper, we report our experience in conducting a series
of collaborative learning sessions at our institute. Our analysis
focuses on three key areas: 1) the effects of group discussions on
students’ coding performance, 2) the impact of different grouping
mechanisms (random and expertise-balanced) on discussion activity
and student coding performance, and 3) the influence of group
composition (varying expertise levels) on discussion quality and
student performance. This experiment involved a large-scale study,
encompassing 788 student participants engaged in collaborative
learning activities over 176 minutes across multiple sessions. The
study generated extensive data, including interactions within 255
formed groups, analysis of group discussions, and evaluation of
numerous coding submissions.

Our experiment yielded several intriguing results that challenge
common assumptions about collaborative learning in programming
education. We found that active group participation did not consis-
tently lead to improved coding performance for struggling students.

https://doi.org/10.1145/3641554.3701973
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641554.3701973
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641554.3701973&domain=pdf&date_stamp=2025-02-18

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

The presence of expert students (those who achieved a 100% pass
rate on programming tasks prior to group formation), while often
beneficial, did not guarantee positive outcomes for all group mem-
bers. In fact, we observed instances where expert-led discussions
failed to result in significant improvements for lower-performing
students. Furthermore, our study revealed that the grouping method
(expertise-balanced or random) had no significant impact on dis-
cussion activeness or overall student improvement across sessions.
This finding suggests that the effectiveness of collaborative learning
may depend more on the quality of interactions and individual stu-
dent factors than on predetermined group composition strategies.
Our experience also uncovered several challenges in implement-
ing collaborative learning in large CS1 classes: the difficulty of
achieving ideal expertise-balanced groups in real classroom set-
tings, the tendency of some students to prioritize individual coding
over group discussion, and the varying ability of expert students to
effectively communicate with their peers. Interestingly, we noted
that less active participants sometimes benefited from "lurking" in
group discussions, suggesting that silent participation can also be
a valid form of learning in these environments. These insights pro-
vide valuable lessons for future research on grouping mechanisms
and in-class activity design.

2 RELATED WORK

Collaborative learning in computer science education has demon-
strated promising results in improving student engagement, per-
formance, and retention [1]. Studies have shown increased student
confidence, participation, and proficiency in introductory program-
ming courses [4]. Zingaro et al. [21] investigated the impact of peer
discussions on student performance in CS courses and found that
such discussions can lead to significant learning gains. However,
the quality and nature of peer feedback also varies based on student
performance levels. Studies have found that higher-performing stu-
dents tend to provide longer, more detailed feedback [22], while the
benefits of receiving feedback can vary dramatically depending on
both the provider’s and receiver’s performance levels [2]. James et
al. [7] observed that over one-third of in-class peer discussions in
large classes can be unproductive, highlighting the need for careful
design of collaborative activities and group formation.

Group formation in CS classes is crucial for promoting effective
collaborative learning. Deibel [3] found that instructor-selected
teams for in-class group work can enhance student interaction and
learning. Automated group formation mechanisms have shown
promise in creating consistent and successful groups for learning
activities [20]. However, forming productive groups remains chal-
lenging due to the complexity of the problem and the sparsity of
the solution space [6]. To address this, researchers have proposed
various approaches, including grouping by learning style, latent jig-
saw methods [3], and massively parallel brute-force algorithms [6].
Web-based applications that collect student information and use al-
gorithms to form groups offer a more systematic approach to group
formation [6]. Nevertheless, the effectiveness of collaborative ac-
tivities in technical domains such as logic programming remains
uncertain.

To support collaborative programming, researchers have devel-
oped various tools and platforms [19]. VizGroup facilitates visual

1261

Tong Wu et al.

P N
(" Session (Session

N Starts _Ends
() Collaborative
v 1% » Random > N
Task Distribution |—~| [ndependent -’ dni | g -
Codin, Geruwng Hajy { Expertise- . [Collaborative
. ik Balanced Coding
N . AN

% Y
8-10 minutes Triggered at 33%

pass rate threshold

8-10 minutes

Figure 1: High-level experimental workflow

collaboration for distributed groups [14]. Lee et al. explored coordi-
nation models for ad hoc programming teams [8]. Wang et al. [18]
developed PuzzleMe, a tool that enables real-time peer discussions
for programming learners while balancing code and expertise di-
versity. These tools have facilitated the distribution of exercises,
grouping of students into small teams, and real-time monitoring of
student performance.

3 EXPERIMENT SETUP
3.1 CS1 Class

Our experiment was conducted at the author’s institution. We chose
the Introduction to Programming in Python course during the
Spring 2024 semester. With a total enrollment of 694 students spread
across three sessions, this course is co-taught by two instructors
and supported by a team of 21 TAs. The course is structured entirely
as an in-person experience. The curriculum covers a wide range of
fundamental programming concepts, including basic control flow
with loops and conditionals, state tracing and manipulation, simple
and complex data types, functional and object-oriented coding
strategies, and data processing. Our experiment was conducted
across 11 sessions as detailed in Table 1, leveraging the teaching
schedules of both instructors. The course’s structure allowed us to
seamlessly implement our group discussion and peer instruction
activities within the existing framework, which already included
regular in-class activities.

3.2 In-class Exercises

Figure 1 illustrates the procedure of the in-class experiments. All
experiments were conducted in the CS1 course. Before starting
each experiment, an instructor announced the procedure of the
peer instruction session and distributed the programming exercise
to all students. Students then worked independently on the exercise
until the overall class performance reached a 33% pass rate. At
this point, students were automatically divided into groups using
two different mechanisms: half were grouped randomly, and the
other half were grouped based on an expertise-balanced mechanism
(see Sec 3.4). During the collaborative coding phase, students in
each group shared a text-based chat channel where they could see
each other’s pass rates in real time. The session concluded when
the instructor manually terminated the chat channels. Both the
independent and collaborative coding parts lasted approximately
8-10 minutes each. We collected students’ chat and code submission
data during the experiment sessions, ensuring that no identifying
information was included.

The Impact of Group Discussion and Formation on Student Performance:
An Experience Report in a Large CS1 Course

Instructor View

LED

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

D 0 5 5D ®

Figure 2: VizPI interface showing the instructor view (left) for managing exercises and group formation, and the student view
(right) featuring an integrated IDE and group chat window for collaborative programming

All the programming tasks in the experiment sessions were de-
signed by the instructors of the course, matching students’ knowl-
edge levels and the course progress. Several learning objectives
such as Variables, Functions, Strings, Lists, and Statements (e.g., if,
for, while) were covered in the tasks.

3.3 Data Collection System

We used a learning platform VizPI [13] to collect student discussion
and coding data. The interface (see Figure 2) consists of an instruc-
tor Ul and a student UL The instructor Ul enables instructors to
easily conduct peer instruction activity by creating and distributing
coding exercises and dividing the class into small groups. The stu-
dent Ul features an IDE and group chat window where students can
write and test their code while communicating with their peers. In
each group, students remain anonymous, and they can view each
other’s pass rate but not their code.

3.4 Grouping Mechanisms

The system first collects comprehensive data on all participating
users, focusing on the number of messages sent and their code
acceptance rates. Using the Zigzag Distribution Algorithm [16], the
system then divides the students into two groups:

o Random Group: Students are randomly assigned into groups
of three or four.

e Expertise-balanced Group: Students are categorized into high,
medium, and low performers based on their pass rate.

The system further analyzes the similarity of students’ code submis-
sions using the text-embedding-3-large model'to generate embed-
dings, then compares these embeddings using cosine similarity. To
maximize within-group code similarity, each group is intentionally
formed with one student from each performance category (high,
medium, low), ensuring a balanced mix of skills and perspectives.
Any remaining students are grouped to ensure no one is left out.

4 RESULTS & LESSONS LEARNED
4.1 Basic Stats & Data Cleaning

We collected data from 11 sessions of CS1 Class, as detailed in
Table 1. These sessions involved a total of 862 students, of which

Ihttps://platform.openai.com/docs/models/embeddings

1262

788 students fully participated and 74 were excluded due to late ar-
rivals or being ungrouped. Individual session participation ranged
from 52 to 84 students. We formed 255 groups, split evenly be-
tween expertise-balanced (128 groups) and random assignment
(127 groups) mechanisms. Within both grouping mechanisms, we
further categorized groups based on their composition, focusing pri-
marily on the presence of expert students (those achieving a 100%
pass rate before grouping). Our improvement analysis focused on
these poor-performing students (Pass Rate < 100%). The experiment
generated rich interaction data:

® 598 messages exchanged among participants

e Session durations ranging from 7:26 to 29:50 minutes (average
~16 minutes)

o Discussion phases lasting 2:55 to 14:11 minutes (average ~7 min-
utes)

Our data cleaning process involved filtering messages and nor-
malizing time data to ensure comparability across sessions. This
comprehensive dataset and our categorization of group expertise
levels provide a foundation for analyzing group discussion effective-
ness and the impact of different grouping mechanisms on student
performance.

4.2 Group and Discussion Definitions

We established several key definitions and categorized groups ac-
cordingly to analyze group dynamics and their impact on student
coding performance.

e Active groups Groups where messages were exchanged

e Inactive groups Groups with no message exchanges

e Relevant discussion Instances where at least two students exchanged
messages discussing code issues or exercise approaches

Irrelevant discussion Groups with only one message, or where
messages were limited to default greetings without substantive replies
about the coding task

o Improvement Poor-performing students increased their pass rate from
pre-grouping to the end of the session

No improvement No increase in pass rate for poor-performing students
Have expert Groups with at least one expert student

No expert Groups without any expert students

Expert-led discussion Discussions led by expert students

Figure 3 illustrates the breakdown of our 255 groups based on these
definitions.

https://platform.openai.com/docs/models/embeddings

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA Tong Wu et al.
Session ID Student total | Balanced group Students in Random group Students in Session start time | Grouping time | Session end time Sessio‘n lasting Discuss%on lasting
number number balanced group number random group time time
1 52 8 26 8 26 2024-04-22 09:02:42 09:15:47 09:22:46 0:20:04 0:06:59
2 58 9 29 9 29 2024-04-22 09:23:20 09:42:16 09:45:11 0:21:51 0:02:55
3 78 13 39 13 39 2024-04-22 12:32:27 12:34:20 12:39:53 0:07:26 0:05:33
4 84 14 42 14 42 2024-04-22 12:46:07 12:50:16 12:53:59 0:07:52 0:03:43
5 82 13 41 13 41 2024-04-23 09:34:54 09:38:13 09:51:45 0:16:51 0:13:32
6 81 13 41 13 40 2024-04-24 12:26:32 12:34:16 12:37:58 0:11:26 0:03:42
7 62 10 31 10 31 2024-04-24 09:26:54 09:40:01 09:43:02 0:16:08 0:03:01
8 63 10 32 10 31 2024-04-24 09:39:45 09:50:53 09:55:42 0:15:57 0:04:49
9 67 11 34 11 33 2024-04-24 09:00:52 09:16:31 09:30:42 0:29:50 0:14:11
10 83 14 42 13 41 2024-04-24 12:46:12 12:49:59 13:00:05 0:13:53 0:10:06
11 78 13 39 13 39 2024-04-24 13:00:59 13:02:59 13:15:50 0:14:51 0:12:51

Table 1: Each session’s Student Number, Grouping Number, and Time Frame Data

146 active groups

R /40 have expert——30 expert-led
/45 improvement <
/ -5 no expert

6lrelevant discussion -'\
/ \ R 12 have expert—9 expert-led
/ 16 no improvement

\-4 no expert

51 improvement

e
85 irrelevant discussion < .
34 no improvement

255 groups £ A}

69 have improvement

40 no improvement

109 inactive groups

Figure 3: Groups activity and improvement

4.3 Impact of Active and Relevant Group
Discussions on Students’ Coding
Performance

Our analysis revealed that active and relevant discussions generally
correlate with improved coding performance, but this relationship
is not consistent across all sessions. The effectiveness of group
discussions varies widely, with improvement rates ranging from 0%
to 85% across sessions. Interestingly, we observed that inactive or
irrelevant discussions sometimes led to better performance, high-
lighting the complexity of collaborative learning in programming
education.

4.3.1 Active vs. Inactive Groups. Figure 4 illustrates the breakdown
of active and inactive groups and their impact on student improve-
ment. Among the active groups, 96 (66%) showed improvement in
poor-performing students’ coding skills, compared to 69 (63%) in
inactive groups. However, the session-by-session analysis revealed
inconsistencies:

e In 5 out of 11 sessions (45%), active groups showed higher mean
improvement than inactive groups.

o In 6 sessions (55%), inactive groups outperformed active groups.

e The magnitude of difference between active and inactive group
performance varied widely across sessions.

4.3.2 Relevant vs. Irrelevant Discussions. To explore the quality of
discussions, we examined the relevance of discussions within active
groups (see Figure 5). Of the groups with relevant discussions, 45
(74%) showed improvement, compared to 51 (60%) of groups with
irrelevant discussions. This analysis provided additional insights:

e In 4 out of 10 sessions (40%), groups with relevant discussions
showed higher mean improvement than those with irrelevant

100 Comparison of Mean Improvement: Active vs Inactive Groups

B Active Groups
Inactive Groups
80

60

40

Mean Improvement

20

~ Vv 2 b i) © A > o
Session ID

Figure 4: Active and improvement

discussions. (Session 6 has 0 relevant discussions, while Session
8 had no active discussions and was excluded from this analysis)
In 6 sessions (60%), groups with irrelevant discussions unexpect-
edly outperformed those with relevant discussions.

The impact of discussion relevance on performance improvement
varied considerably across sessions.

Comparison of Mean Improvement: Relevant vs Irrelevant Groups

100
B Relevant Groups
Irrelevant Groups
. 80
c
o
§
g 60
<4
£
= 40
c
©
Q
=
20
0
~ v) 4 “ © A o N NS
Session ID

Figure 5: Relevant and improvement

4.3.3 Implications of Findings and Lessons Learned. Our observa-
tions suggest that the effectiveness of group discussions may be in-
fluenced by multiple factors beyond mere participation or perceived
relevance. While not conclusively proven in this study, factors such
as task difficulty, student expertise levels, and other contextual el-
ements likely play significant roles. Further research is needed to
quantify these effects. Besides, the wide variation in improvement
rates across sessions underscores the highly context-dependent na-
ture of group discussions’ impact. This observation teaches us that a

The Impact of Group Discussion and Formation on Student Performance:
An Experience Report in a Large CS1 Course

one-size-fits-all approach to collaborative learning in programming
education is insufficient. Future experiments should incorporate
more detailed contextual data to better understand these variations.
Perhaps most notably, the performance of some inactive or irrele-
vant discussion groups highlights the multifaceted nature of learn-
ing in programming education. Their performance proves students’
independent trial-error process could lead to performance improve-
ment. This finding suggests that our current metrics for catego-
rizing discussions as "active" or "relevant” may not fully capture
the nuanced ways in which students learn from peer interactions.
It also indicates that silent participation or even seemingly off-
topic discussions might have unexpected benefits that our current
measurement tools fail to capture.

4.4 The effectiveness of different grouping
methods (random vs. expertise-balanced) on
discussion activity and student coding
performance

Our experiment compared two grouping mechanisms: random and
expertise-balanced grouping. We analyzed their impact on group
discussion activity and student coding performance across 11 ses-
sions (see Figure 6). The results reveal that there’s no clear superi-
ority of one method over the other.

4.4.1 Discussion Activity. The data shows considerable variation
in active group ratios (the proportion of groups that engaged in dis-
cussion during a session) between sessions and grouping methods:

e Random grouping: Active group ratios ranged from 0% to 93%,
with a mean of 55%.

o Expertise-balanced grouping: Active group ratios ranged from
41% to 100%, with a mean of 60%.

While the expertise-balanced groups showed slightly higher
average active group ratios, the difference was not consistent across
all sessions. Some sessions (e.g., 1, 5) saw higher activity in expertise-
balanced groups, while others (e.g., 2, 4) showed higher activity in
randomly formed groups.

4.4.2 Student Coding Performance. We measured student coding
performance improvement for both grouping methods:

e Random grouping: Average improvement ranged from 9% to 79%,
with an overall mean of 46%.

o Expertise-balanced grouping: Average improvement ranged from
0% to 89%, with an overall mean of 44%.

The overall average improvement was slightly higher for ran-
dom grouping (46%) compared to expertise-balanced grouping (44%).
However, this difference was not statistically significant, as indi-
cated by the Wilcoxon signed-rank test (statistic = 29.00, p-value
= 0.7646). This suggests that the grouping method (random vs.
expertise-balanced) does not significantly impact student improve-
ment.

4.4.3 Session-by-Session Analysis. The effectiveness of each group-
ing method varied considerably across sessions:

e In 6 out of 11 sessions, random grouping showed higher average
improvement.

1264

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Average Improvement Trend by Method

80
k=
53
5 60
3
s ¥
¢ V
®
>
o
@
Z 2

—e— Random
o Expertise_balanced
Active Groups Ratio Trend by Method
o QL —— Random
Expertise_balanced

° 08
©
o
3 06
5
o
2 0.4
=
51
<

°

°
°

‘o
A

Session ID

Figure 6: Comparison of Random and Expertise-balanced
Group Formation Methods Across Multiple Sessions

e In 5 out of 11 sessions, expertise-balanced grouping showed
higher average improvement.

o The magnitude of difference in improvement between the two
methods ranged from 0.2% (session 10) to 19% (session 11).

Notably, some sessions (e.g., 2) showed a stark contrast, with
random grouping yielding an 9% improvement while expertise-
balanced grouping resulted in no improvement.

4.4.4 Implications and Lessons Learned. Our findings on the ef-
fectiveness of random versus expertise-balanced grouping mech-
anisms reveal a more nuanced picture than initially anticipated.
The lack of a clear, consistent advantage for either method across
all sessions highlights the complexity of collaborative learning in
programming education. This complexity suggests that the effec-
tiveness of grouping strategies may be influenced by a multitude
of factors beyond the simple dichotomy of random versus balanced
expertise. The varying degrees of success for both methods across
different sessions indicate that contextual elements such as task
difficulty, student preparedness, and even subtle variations in group
dynamics play crucial roles in determining outcomes.

These observations lead us to consider that the apparent sim-
ilarity in performance between random and expertise-balanced
groups might be due to underlying similarities in group composi-
tion that occur naturally even in random grouping. With 61 out of
127 random groups having similar expertise levels to the expertise-
balanced groups, we must question whether our current approach
to expertise-balanced grouping is sufficiently distinct from random
assignment to produce measurable differences in outcomes. This
realization points to the need for a more granular analysis of group
composition and its impact on both group activity and student
performance.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

4.5 The influence of group composition
(varying expertise levels) on discussion
activity and student coding performance

In this section, we delve deeper into the detailed group composi-
tion to examine whether the lack of significant differences between
random and expertise-balanced groups is due to their similar ex-
pertise levels. While quantitative analysis across sessions did not
yield consistent or statistically significant results, a deeper semantic
analysis of group interactions provided valuable insights into the
role of expertise in group discussions and its influence on student
performance.

4.5.1 Expert-led Discussions and Performance Improvement. A no-
table trend emerged from our analysis of active discussion groups
where poor-performing students showed improvement. Out of 40
such groups, 30 (75%) were expert-led, meaning they included at
least one expert student who actively participated in the discussion.
This suggests that the presence of an expert can often catalyze
productive discussions and lead to performance improvements for
struggling students.

For instance, in group 2889 from session 3, we observed a ben-
eficial interaction between an expert student (Student A) and a
struggling student (Student B):

Student A: Would anyone like some help?

Student B: Yes, I tried to do a list comprehension like this
"def good_scores(scores): new_scores = [score for scores in
good_scores if score > 80] return new_scores” should I do a
for loop instead?

Student A: I used a for loop, but a comprehension should
work. You need to change good_scores to just scores since
scores is the list.

Student B: ohh i fixed it

Student A: nice :)

Student B: thanks pink_primate!

This exchange demonstrates how an expert’s presence can fa-
cilitate a focused, problem-solving dialogue, leading to immediate
improvements in the struggling student’s code.

4.5.2 Limitations and Factors Influencing the Effectiveness of Expert
Presence. Our analysis also revealed that the mere presence of ex-
pert students does not guarantee successful knowledge transfer or
performance improvement for struggling peers. Here is an example
between two expert students (C and E) and one struggling student
(Student D) from group 2860 in session 2:

Student C: For those that didn’t get it, please send in a copy
of your code

Student D: "def remove_vowels(phrase): vowels = CA’, ’E’,
T, 0, ’U’) for letter in phrase: if letter in vowels.upper():
phrase.strip(letter) elif letter in vowels.lower(): phrase.strip(letter)
return phrase"

Student E: What errors are you getting?

Student C: I don’t think you can strip a letter from the mddle
of the word, only the ends

Student D: tuple’ object has to attribute "upper’

Student C: Write your values as a list and not as a tuple
Student C: Like this maybe: vowels = ’aeciouAEIOU’
Student E: that’s a string, a list is contained in []

1265

Tong Wu et al.

In this instance, the struggling student failed to improve despite
iterative attempts and group support. Our analysis across 40 groups
identified several factors contributing to the varying effectiveness of
these interactions: insufficient problem identification, fragmented
or ambiguous advice, temporal constraints, conflicting guidance
from multiple sources, and the absence of structured, step-by-step
problem-solving methodologies. These factors were observed re-
peatedly in discussions where expert-led interactions failed to yield
significant progress for struggling students.

These findings underscore the challenges faced by expert stu-
dents when attempting to contribute effectively to group discus-
sions. The efficacy of expert-led discussions is contingent upon the
expert’s ability to communicate clearly, identify core issues, and
provide structured, tailored guidance to struggling peers. This ob-
servation elucidates why expertise-balanced group mechanisms do
not consistently yield significant improvements in student perfor-
mance. The key inference is that leveraging expertise within group
discussions is a multifaceted challenge, emphasizing the necessity
for targeted strategies to enhance peer instruction in collaborative
coding environments. Future research should focus on develop-
ing and evaluating such strategies to optimize the benefits of Peer
Instruction learning in computer science education.

5 DISCUSSION & CONCLUSION

Our main observations from this experiment including: 1) Active dis-
cussions generally correlated with improved coding performance,
but this relationship was not consistent across all sessions. The ef-
fectiveness of group discussions varied widely, with improvement
rates ranging from 0% to 85.22% across sessions. 2) Different group-
ing method (expertise-balanced or random) does not significantly
influence group discussion activeness and students’ improvement.
And 3) 75% of productive groups (groups have active discussion and
improved performance) were led by expert students. This finding
aligns with Vygotsky’s concept of the Zone of Proximal Develop-
ment [17]. Expert students often provided scaffolding for their strug-
gling peers, facilitating knowledge transfer and problem-solving
skills. However, the mere presence of an expert did not guaran-
tee successful outcomes. Factors such as communication clarity,
problem-identification skills, and the ability to provide structured
guidance influenced the effectiveness of expert-led discussions. This
complexity echoes findings by James and Willoughby [7], who ob-
served that a significant portion of in-class peer discussions can be
unproductive.

Our experiment highlighted several challenges in implement-
ing effective collaborative learning strategies in large CS1 courses.
Firstly, achieving an ideal expertise balance in real classroom set-
tings proved to be a complex task, often deviating from theoretical
expectations. Secondly, we observed a tendency among some stu-
dents to prioritize individual coding efforts over engaging in group
discussions, potentially limiting the benefits of collaborative learn-
ing. Lastly, the effectiveness of grouping mechanisms, whether
random or expertise-balanced, exhibited considerable variation
across sessions. This variability suggests that uniform approaches
to group formation may be insufficient in addressing the diverse
learning needs and dynamics present in large-scale programming
courses.

The Impact of Group Discussion and Formation on Student Performance:
An Experience Report in a Large CS1 Course

REFERENCES

[1] Leland Beck and Alexander Chizhik. 2013. Cooperative learning instructional

[2

[10

[11

[

methods for CS1: Design, implementation, and evaluation. ACM Transactions on
Computing Education (TOCE) 13, 3 (2013), 1-21.

Catherine H Crouch, Jessica Watkins, Adam P Fagen, and Eric Mazur. 2007. Peer
instruction: Engaging students one-on-one, all at once. Research-based reform of
university physics 1, 1 (2007), 40-95.

Katherine Deibel. 2005. Team formation methods for increasing interaction
during in-class group work. In Proceedings of the 10th annual SIGCSE conference
on Innovation and technology in computer science education. 291-295.

Katrina Falkner and David S Munro. 2009. Easing the transition: a collaborative
learning approach. In Proceedings of the Eleventh Australasian Conference on
Computing Education-Volume 95. 65-74.

Cornelia S Grofie and Alexander Renkl. 2006. Effects of multiple solution methods
in mathematics learning. Learning and Instruction 16, 2 (2006), 122-138.

Tyson R Henry. 2013. Forming productive student groups using a massively
parallel brute-force algorithm. In Proceedings of the World Congress on Engineering
and Computer Science, Vol. 1. 23-25.

Mary C James and Shannon Willoughby. 2011. Listening to student conversations
during clicker questions: What you have not heard might surprise you! American
Journal of Physics 79, 1 (2011), 123-132.

Sang Won Lee, Yan Chen, Noah Klugman, Sai R Gouravajhala, Angela Chen, and
Walter S Lasecki. 2017. Exploring coordination models for ad hoc programming
teams. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. 2738-2745.

Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving fail rates using
peer instruction: a study of four computer science courses. In Proceeding of the
44th ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA,
177-182. https://doi.org/10.1145/2445196.2445250

Fernando J. Rodriguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer.
2017. Exploring the Pair Programming Process: Characteristics of Effective
Collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 507-512. https://doi.org/10.
1145/3017680.3017748

Roberta Evans Sabin and Edward P Sabin. 1994. Collaborative learning in an
introductory computer science course. In Proceedings of the twenty-fifth SIGCSE
symposium on Computer science education. 304-308.

1266

[12

=
&

[14

=
i)

(17]

[18

[19

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Luis Miguel Serrano-Camara, Maximiliano Paredes-Velasco, Carlos-Maria Al-
cover, and J Angel Velazquez-Iturbide. 2014. An evaluation of students’ moti-
vation in computer-supported collaborative learning of programming concepts.
Computers in human behavior 31 (2014), 499-508.

Xiaohang Tang, Xi Chen, Sam Wong, and Yan Chen. 2023. VizPI: A Real-Time
Visualization Tool for Enhancing Peer Instruction in Large-Scale Programming
Lectures. In Adjunct Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology (San Francisco, CA, USA) (UIST 23 Adjunct).
Association for Computing Machinery, New York, NY, USA, Article 17, 3 pages.
https://doi.org/10.1145/3586182.3616632

Xiaohang Tang, Sam Wong, Kevin Pu, Xi Chen, Yalong Yang, and Yan Chen. 2024.
VizGroup: An Al-assisted Event-driven System for Collaborative Programming
Learning Analytics. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology (Pittsburgh, PA, USA) (UIST °24). Association
for Computing Machinery, New York, NY, USA, Article 93, 22 pages. https:
//doi.org/10.1145/3654777.3676347

Cynthia Taylor, Jaime Spacco, David P Bunde, Andrew Petersen, Soohyun Nam
Liao, and Leo Porter. 2018. A multi-institution exploration of peer instruction
in practice. In Proceedings of the 23rd annual ACM conference on innovation and
technology in computer science education. 308-313.

Duc A Tran, Kien A Hua, and Tai T Do. 2004. A peer-to-peer architecture for
media streaming. IEEE journal on Selected Areas in Communications 22, 1 (2004),
121-133.

Lev Semenovich Vygotsky and Michael Cole. 1978. Mind in society: Development
of higher psychological processes. Harvard university press.

April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve
Oney. 2021. PuzzleMe: Leveraging Peer Assessment for In-Class Programming
Exercises. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2
(2021), 1-24.

Tianjia Wang, Tong Wu, Huayi Liu, Chris Brown, and Yan Chen. 2024. Gen-
erative Co-Learners: Enhancing Cognitive and Social Presence of Students in
Asynchronous Learning with Generative AL arXiv preprint arXiv:2410.04365
(2024).

Carine G Webber and Maria de Fatima Webber do Prado Lima. 2012. Evaluating
automatic group formation mechanisms to promote collaborative learning-a
case study. International Journal of Learning Technology 7, 3 (2012), 261-276.
Daniel Zingaro and Leo Porter. 2014. Peer instruction in computing: The value

of instructor intervention. Computers & Education 71 (2014), 87-96.
Zheng Zong and Christian D Schunn. 2023. Does matching peers at finer-grained

levels of prior performance enhance gains in task performance from peer review?
International Journal of Computer-Supported Collaborative Learning 18, 3 (2023),
425-456.

https://doi.org/10.1145/2445196.2445250
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3586182.3616632
https://doi.org/10.1145/3654777.3676347
https://doi.org/10.1145/3654777.3676347

	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Setup
	3.1 CS1 Class
	3.2 In-class Exercises
	3.3 Data Collection System
	3.4 Grouping Mechanisms

	4 Results & lessons learned
	4.1 Basic Stats & Data Cleaning
	4.2 Group and Discussion Definitions
	4.3 Impact of Active and Relevant Group Discussions on Students' Coding Performance
	4.4 The effectiveness of different grouping methods (random vs. expertise-balanced) on discussion activity and student coding performance
	4.5 The influence of group composition (varying expertise levels) on discussion activity and student coding performance

	5 Discussion & Conclusion
	References

