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Figure 1: VizGroup, an LLMs-assisted system for real-time collaborative learning analytics, visualizes student performance and 
collaboration via a dynamic 2D scatter plot and provides proactive notifcations for timely interventions. 

ABSTRACT 
Programming instructors often conduct collaborative learning ac-
tivities, like Peer Instruction, to foster a deeper understanding in 
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students and enhance their engagement with learning. These ac-
tivities, however, may not always yield productive outcomes due 
to the diversity of student mental models and their inefective col-
laboration. In this work, we introduce VizGroup, an AI-assisted 
system that enables programming instructors to easily oversee 
students’ real-time collaborative learning behaviors during large 
programming courses. VizGroup leverages Large Language Mod-
els (LLMs) to recommend event specifcations for instructors so 
that they can simultaneously track and receive alerts about key 
correlation patterns between various collaboration metrics and on-
going coding tasks. We evaluated VizGroup with 12 instructors in 
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a comparison study using a dataset collected from a Peer Instruc-
tion activity that was conducted in a large programming lecture. 
The results showed that VizGroup helped instructors efectively 
overview, narrow down, and track nuances throughout students’ 
behaviors. 
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1 INTRODUCTION 
Students’ active collaboration with peers while learning can pro-
mote engagement, deepen their understanding of concepts, and 
enhance their problem-solving skills [55]. In Computer Science 
Education, peer learning activities such as group discussions [41], 
pair programming [50], code reviews [24], peer instruction [16], 
and peer assessments [56] have been employed to foster coopera-
tive learning environments. Peer Instruction (PI), for example, is 
an in-class instructional strategy that emphasizes students’ active 
construction of a conceptual understanding with their peers [16]. 
During peer instruction, students frst individually respond to a 
question (i.e., write and submit their code independently), then dis-
cuss their code with peers, modify their code, and fnally re-submit 
it. Peer instruction has been shown to be efective at reducing fail-
ure rates, improving retention, and enhancing exam performance 
across various felds, including computer science [6, 38, 46, 48, 54]. 

Although numerous studies have highlighted the benefts of 
PI, prior work has advocated for guidance during peer collabora-
tion [59] and recommended that teaching staf should manage pair 
interactions in programming labs [61]. Yet, it is challenging to de-
sign efective management tools to assist instructors in conducting 
PI activities in large programming classes where large volumes of 
data about groups can be generated. We argue that this is largely 
because the interplay between discussion and learning outcomes 
during a PI session has received less attention, making it difcult 
to identify and observe meaningful learner interaction patterns. 
It is unclear if all discussions positively impact overall learning 
outcomes or if inefective communication can hinder progress [47]. 
By developing tools that enable instructors to better observe and be 
aware of these interaction patterns, they could begin to understand 
the relationship between discussion and learning outcomes in the 
context of their specifc courses. 

Tools, such as visual analytics (VA), i.e., the combination of auto-
mated analysis and interactive visualizations, have shown promise 
in identifying patterns in large-scale data [9, 34, 35]. While most 
visual analytics (VA) tools support ofine analysis of previously col-
lected data, they often lack real-time analysis capabilities [11]. This 
limits instructors’ ability to provide immediate, data-driven inter-
ventions that could enhance collaborative performance, particularly 
when unexpected behavior patterns emerge. Other systems, such 

as Groupnamics [52] and Pair-Up [64], have explored the efects 
of real-time collaboration analytics, but they did not adequately 
address the need to analyze the relationship between group collab-
oration and learning outcomes at scale. The increasing volume and 
complexity of data generated during collaborative learning activi-
ties can overwhelm instructors, hindering their ability to identify 
and track events that demand time-sensitive attention. Meanwhile, 
recent advances in Large Language Models (LLMs) have demon-
strated the potential to perform real-time data analysis at scale, but 
it is unclear how to efectively use LLMs to organize and present the 
information in an intuitive way for collaborative learning analytics. 

To investigate the specifc design needs and challenges instruc-
tors face, we deployed a technology probe in a large programming 
class (100+ students) where the instructor conducted a PI coding 
exercise. Our exploration highlighted that (1) instructors need to 
be able to easily track multiple patterns of correlation between 
collaboration and the coding exercise in real-time, (2) they need 
to be informed about emerging patterns in group activity over 
time, and (3) they need to be able to get a sense of how interaction 
patterns correlate with the future success of the groups. These fnd-
ings underscore the importance of designing systems that support 
instructors in managing collaborative learning environments by 
enabling them to monitor multiple types of information without 
being overly constrained by a prescribed approach. 

Based on these fndings, we developed VizGroup, an LLMs-
assisted system that streamlines the process of overseeing real-
time collaborative learning analytics during a programming lecture. 
VizGroup displays and updates a 2D scatter plot that visualizes 
collaboration information and students’ performance in near real-
time. After inputting user interactions (e.g., clicking on a topic) and 
urgent patterns found in historical data (e.g., groups not chatting 
after a new code issue occurs) into an LLM, VizGroup will proac-
tively recommend notifcations (i.e., intelligent monitoring units) 
that track specifc metrics and alert users to important changes or 
patterns in the data. 

To assess VizGroup’s usability and efectiveness, we conducted 
a between-subject study with 12 participants with teaching ex-
perience. Participants used a basic visual analytics tool without 
a notifcation system and then used VizGroup with or without 
our LLM recommendation notifcations. The results showed that 
compared to a version of VizGroup without the notifcation rec-
ommendation, VizGroup with suggested units helped instructors 
create additional monitoring units that were previously undiscover-
able on their own. These recommendations covered a more diverse 
range of metrics, providing a more comprehensive understanding of 
the learning process. Furthermore, we found evidence that the sug-
gested notifcations infuenced the participants’ decision-making 
when selecting the following monitoring unit criteria. Our research 
makes the following contributions: 

• Design implications from our formative study that aim to enhance 
instructors’ capacities to monitor and comprehend class-wide 
collaboration dynamics as they occur. 

• A new approach that uses contextual information, such as user 
interactions and real-time data changes, to generate recommen-
dations for tracker and alert creation for novices while using 
real-time learning visual analytics. 
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• VizGroup, a novel AI-assisted monitoring system for collabora-
tive learning analytics that streamlines the monitoring of key 
patterns in data via intelligent, context-aware notifcation cre-
ation. 

2 RELATED WORK 
This section reviews four research felds that inspired our work: 
collaborative learning, learning analytic systems, collaboration an-
alytic systems, and notifcation systems. 

2.1 Collaborative Learning 
Collaboration plays a pivotal role in educational policy, research, 
and technology [23], with teams becoming the model of choice to 
foster economic competitiveness, improve quality of life, and ensure 
national security [20]. In education, decades of research have shown 
that collaborative learning can increase student motivation by en-
gaging students in active, hands-on activities (e.g., discussions) that 
are complemented by immediate peer feedback [60] Studies have 
consistently demonstrated that collaborative learning approaches 
yield greater learning gains than traditional methods, which often 
rely on passive lectures and standardized exams [26, 51]. Dowell et 
al. have developed methods to identify individual roles in collab-
orative learning contexts to gauge socio-cognitive behaviors [19]. 
Additionally, systems like PeerStudio [37] and TalkAbout [36] capi-
talized on peer feedback to improve student performance in MOOCs 
by strategically connecting peers based on their performance and 
geographic locations. 

Even with such interventions, the efcacy of collaborative learn-
ing is not guaranteed. An examination of peer discussions in a large 
introductory Astronomy course revealed that a signifcant portion 
(i.e., 37.7%) were unproductive, highlighting the common pitfalls of 
unsupervised conversations [32]. Further research into students’ 
help-seeking behaviors has shown that novices often struggle to 
pose well-formed questions due to their incomplete mental mod-
els and lack of the tools to efectively seek help, even when they 
understand the subject matter [12–14]. Unfortunately, instructors 
may not become aware of these challenges until it is too late, if at 
all. Therefore, there is a pressing need to track group activities in 
real-time to enhance the quality of collaborative learning experi-
ences. VizGroup addresses these critical gaps by providing in-depth 
analytics of collaborative learning behaviors to enhance the man-
agement and facilitation of collaborative dynamics in large-scale, 
co-located programming learning settings. 

2.2 Learning Analytics 
Learning analytics, an emerging feld that focuses on analyzing and 
visualizing learner data to enhance educational outcomes, provides 
educators with a fresh perspective on understanding and improv-
ing the learning process [15]. This discipline has been an active 
research area in the past decade in the HCI community as a result 
of the substantial growth in the amount of data available about 
learners, and it is connected to management strategies that empha-
size quantitative measures. Our project builds upon the foundation 
laid by prior research in learning support and analytics systems, 
which have been instrumental in enhancing the understanding of 

students’ learning performances. These systems can be broadly 
categorized into two settings: synchronous and asynchronous. 

Synchronous Settings. In real-time analytics, tools like Lu-
milo [30], VizProg [65], and Codeopticon [25], have ofered instruc-
tors live insights into student activities such as coding and doing 
math on their computer. Other tools such as EduSense [2], Afec-
tiveSpotlight [45], and Glancee [40] assessed student and audience 
facial or body gestures to provide new analytics to instructors. 
These studies found that providing instructors with rich data about 
their students’ statuses can reveal key insights about their level of 
engagement, which helps instructors better manage the challenges 
of large class sizes. These tools, however, only focus on students’ 
individual activities and did not consider the collaborative aspects 
of live classroom settings. 

Asynchronous Setting. In contrast, asynchronous learning ana-
lytics systems like Overcode [22], Foobaz [21], and MistakeBrowser 
and FixPropagator [28] have excelled at generating personalized 
feedback for clusters of student submissions that displayed similar 
patterns. Although benefcial for learning, these systems primarily 
concentrated on individual student achievements without consid-
ering the broader social context of learning. 

2.3 Collaboration Analytics 
The HCI and Education communities have advocated for collabora-
tion analytics systems that are theoretically grounded, adaptively 
capture comprehensive interaction data, model collaboration sensi-
tively to context, respect users ethically, and provide customized 
support catering to the distinct characteristics of individuals and 
groups [53]. Instructors, however, often face challenges while mon-
itoring and guiding group discussions as they may not have access 
to adequate information about a group and its members or are 
unable to constantly facilitate conversations. 

Prior work, such as Pair-Up [63], explored collaboration analyt-
ics by examining the transition behaviors of K-12 students from 
individual to group learning. Groupdynamics [52] provided a sum-
mary of the vocal activities and statuses of up to 10 small discussion 
groups. While these systems provided valuable insights into collab-
oration dynamics, they focused on prescribed metrics and lacked 
support for discovering the emerging correlation patterns between 
collaboration and the tasks that people are working on. 

Prior work [10] and our formative study (Section 3) have sug-
gested the need to support the correlation between working tasks 
and collaboration metrics. Moreover, existing collaboration analyt-
ics tools often lack guidance on how instructors should prioritize 
their attention. Researchers have suggested a more fexible notif-
cation system that enables users to customize the group behaviors 
they wish to monitor and receive alerts about, such as group status. 
Additionally, keeping track of multiple visited groups and their 
descriptions is mentally taxing for instructors [52]. VizGroup aims 
to fll these gaps by providing instructors with the ability to analyze 
the correlation between collaboration dynamics and the tasks stu-
dents are working on, and to easily create notifcations and alerts 
about insightful patterns. 
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2.4 Notifcation Systems 
Notifcation is an important feature in today’s software systems. 
It allows users to receive relevant updates more timely. Common 
examples include monitors and alert functions in medical systems 
that are designed to support doctors in receiving time-critical de-
cision support [43, 44], and email and message notifcations in 
mobile applications that are designed to help users stay aware of 
personal matters [39]. There were also works on providing real-
time notifcations and feedback in classrooms to enhance teachers’ 
awareness [42] and support teachers’ orchestration [58]. However, 
these works often focus on the impact that notifcations have on 
users’ work and well-being, such as work disruption, and the ap-
propriate time to receive notifcations [3, 29]. In contrast, we look 
at how to help users choose and create notifcations to optimize 
their resources or efort in real-time. 

Recent LLMs may help process this massive number of multi-
faceted data in real-time. However, it remains unexplored how 
to efectively leverage LLMs in notifcation systems that support 
users in identifying urgent information to monitor for allocating 
help-seeking resources. Our work takes inspiration from prior no-
tifcation systems and flls this gap by exploring the use of LLMs to 
generate context-aware notifcations in collaborative learning envi-
ronments, enabling instructors to efciently manage and support 
students’ learning experiences. 

3 FORMATIVE STUDY 
Due to the lack of real-time large-scale collaborative learning VA 
systems, we deployed a technology probe [31] to explore the po-
tential informational needs of instructors and the corresponding 
design challenges. To discover design considerations and derive 
interface designs for our probe, we frst conducted semi-structured 
interviews with four experienced instructors of large programming 
courses at our institution. These need-fnding interviews focused 
on the types of information instructions desired in real-time during 
the group discussion activity and the decisions they aimed to make 
based on this information. We found that instructors desired to 
discern patterns in code and group discussions and their interplay 
in how discussions aided students in resolving their issues. 

3.1 Probe System Design 
In response to interview fndings, we developed a probe VA system 
that collected student code submissions and evaluated their correct-
ness using unit tests. It used an LLM to summarize students’ chat 
messages in group activities and presented the information using 
an individual and a group-level visualization, along with students’ 
task progress and errors. 

To analyze the student discussions in each group, messages were 
tagged individually and the conversation was summarized. To de-
fne meaningful patterns, we draw upon principles from social 
interdependence theory [33], which posits that efective collabora-
tive learning is characterized by promotive interactions that occur 
as individuals encourage and facilitate each other’s eforts to reach 
the group’s goals (such as maximizing each other’s learning). Based 
on the theory, all chat messages were tagged by GPT-4 using 6 cat-
egories: 1. Help-giving, 2. Help-seeking, 3. Exchanging information 
and feedback, 4. Joint refection on progress and process, 5. Mutual 

encouragement and challenging, 6. Not related to the class. GPT-4 
tagged each message in real-time and displayed the tag below each 
chat message (Fig.2.4b). Furthermore, the main topic discussed in 
each group conversation was summarized by GPT-4 every time a 
new message was sent in the chat (Fig.2.4a), thus enabling instruc-
tors to obtain an overview of the conversations among diferent 
groups without having to read all the chat messages. 

To enable instructors to efciently track information in real-time, 
the probe included a live visualization of individual and group lev-
els (Fig.2.5a). On an individual level, the probe calculated students’ 
activity scores based on their chat history. Each message from cate-
gories 1-5 contributed 1.0 to the activity score, and each category 6 
message contributed 0.3 to the score. For the group level, the score 
was computed as the average activity score of all group members. 
The activity score of each group was represented as a scatter plot 
dot, where the y-axis was the activity level of the group and the 
x-axis denoted the unit test pass rate. Participants could manually 
select a dot to view detailed student or group information or select 
a range to track multiple students or groups (Fig.2.5b). 

3.2 Methodology 
We recruited 8 participants with experience teaching programming 
courses to participate in our within-subject study where they eval-
uated the probe and a baseline system. Participants then completed 
a survey and interview. We captured an in-class peer instruction 
session from a large-scale introductory university programming 
course (i.e., 111 students, 37 groups) and used its live playback dur-
ing the study. The baseline condition was an ablated version of the 
probe without the group discussion visualization and intelligent 
features like discussion topic summary, team activity level, and 
message tags (i.e., without 4a, 4b, 5a, and 5b in Figure 2), similar to 
existing educational VA systems. 

For each condition, participants were asked to complete four 
tasks (Appendix B), designed to evaluate instructors’ understanding 
of student and group progress and dynamics based on the insights 
from the need-fnding interviews. Each task required participants 
to experience a segment of the recorded instruction session. Three 
tasks involved identifying patterns in a group discussion and stu-
dents’ help-seeking using the visualization system. One open-ended 
task asked participants to identify any issue they found important as 
instructors. The system conditions and tasks were counterbalanced. 

3.3 Results and Design Considerations 
To analyze the results, we calculated the correctness of the iden-
tifed trend (i.e., a particular student’s or group’s task pass rate 
and discussion increased or decreased over time), and the precision 
and recall of the classifcation tasks (i.e., identify all the students 
that have engaged in group discussions over a period of time). For 
Task 1, a T-test found no signifcant diference in the precision 
(� = 0.11) and recall (� = 0.44) between the two conditions. For 
Task 2, participants had a higher recall using the probe (Probe: 
���� = 0.990, � = 0.029; Baseline: ���� = 0.742, � = 0.200, � < 
0.01), while the precision was on par for both conditions (� = 0.96). 
We also found that participants had better accuracy while tracking 
and understanding group dynamics trends during Task 3 while 
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Figure 2: The technology probe’s user interface. (1) Code issue list aggregated code errors based on student code submissions. 
(2) the class performance of the number of student passing each unit test. (3) A student activity panel that showed the activity 
level and pass rate of each group and group member. The chat panels contained the chat history of the selected group, (4a) 
a summary of the conversation and (4b) the tagged chat message (in blue) as summarised by the LLM. (5a) The scatter plot 
that visualized students’ activity level and could be toggled between individual view and student view. (5b) Instructors could 
examine multiple data points by highlighting a region and (6) each data point would be displayed in the Group List panel. (7) 
Each session could be reviewed via playback controls. 

using the probe (���� = 0.875, � = 0.173) than the baseline sys-
tem (���� = 0.667, � = 0.178, � < 0.05). We did not fnd a sig-
nifcant diference in the time spent completing the tasks (Probe: 
���� = 1277.29� , Baseline: ���� = 1244.86� , � > 0.05). 

We also coded the issues participants recorded during the open-
ended quiz task (Task 4), and distinguished between two types 
of descriptions: general and detailed. Participants identifed more 
issues overall with the probe (���� = 3.000, � = 0.930) than 
with the baseline (���� = 1.875, � = 1.130, � < 0.05). The re-
sults also showed that participants identifed more detailed issues 
using the probe (���� = 2.000, � = 1.200) than the baseline 
(���� = 0.500, � = 0.760, � < 0.01). Specifcally, with the base-
line system, 4 participants described issues in a general way such as 
"Syntax Error", and 1 participant could not describe any issue. While 
with the probe, 7 participants were able to explore both the code 
and the discussions, recording detailed issues such as "returning not 
an int or wrong int from calculation". 

From the post-study survey and interviews, we found that the 
probe’s ability to present discussion topics and activity levels prompted 
participants to investigate patterns starting from group engagement 
down to student-level coding challenges. 6 participants (P1, P3, P5, 
P6, P7, P8) reported discussion topic as one of the "most satisfying" 

features because it is "very useful for instructor to fnd the common 
issues" without “checking it one by one” (P6). P4 also suggested that 
activity levels addressed the issue of “a little bit nervous (seeing) au-
tomatically generated topics”. Moreover, participants reported that 
the probe’s high-level information display and visualization features 
“provided about what was going on in the class.” (P5) and “allow me to 
quickly overview the status of the students, and help me easily identify 
the student who is struggling” (P2). These features streamlined the 
process of monitoring and analyzing collaborative learning dynam-
ics, thereby facilitating a more nuanced understanding of student 
and group performance over time. 

However, the probe demanded higher cognitive loads as partici-
pants needed to manually keep track of an identifed pattern over 
time, making the observation unscalable to monitor multiple pat-
terns (e.g., students who were not engaging, students who lacked 
support, etc.). P6 stated that “sometimes I forget some of the students’ 
performance before that I can’t tell if the pass rate was increased.” 
Participants also mentioned the importance of focusing on a “level 
or window” when inspecting students and groups “that can make 
it more efcient as we are not distracted by other information” (P5). 
In addition, diferent patterns were relevant in diferent contexts. 
For example, initially, students may not be engaged in a discussion 
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Figure 3: VizGroup’s User Interface. (1) Scatterplot displays student’s progress via group view, group structure view and individual 
view. (2) Suggested notifcation panel that displays context-aware notifcation suggestions and user-defned notifcations. (3) 
Active notifcation panel that displays active trackers and alerts. (4) Class performance that shows the number of students that 
passes each unit tests. (5) List of Details on group conversation topic and student error messages. (6) Group information panel 
that shows group and individual activity. (7) LLM summary of student conversation and conversation history. (8) Each session 
can be controlled with playback. 

as they work on a coding task, but this idleness could become an 
issue once everyone else has submitted their code. The context de-
pendency prompts a design that would enable contextually-aware 
pattern discovery and monitoring in the next iteration of our system 
design. 

4 DESIGN GOALS 
Our formative study revealed two primary efects driving our DGs: 
(1) instructors used diferent levels of information scope to under-
stand student progress, and (2) instructors were overloaded when 
tracking progress and providing support. Based on these fndings 
and the key challenges identifed in prior work, three design goals 
guided the iterative development of VizGroup to support instruc-
tors in being able to easily monitor collaborative learning in large 
programming classes. 

• DG1. Efcient and contextualized navigation across dif-
ferent levels of granularity. To enable instructors to identify 
patterns of concern in real-time using interactive learning analyt-
ics, the navigation process must be both efcient and adaptable 
to diferent levels of granularity, allowing seamless transitions 
between individual, group, and class-wide perspectives. 

• DG2. Real-time and attention-free monitoring. To address 
the overload instructors experienced when trying to follow the 
progress of parallel groups, there is a need for a system that ofers 
real-time, attention-free monitoring, along with mechanisms to 

selectively guide their attention and minimize interference with 
their workfow. 

• DG3. Guiding instructors’ attention while considering both 
instructors’ and students’ needs in context. To avoid com-
pounding instructors’ overload with unnecessary interruptions, 
mechanisms for guiding instructors’ attention (e.g., via notifca-
tions) must be context-aware, taking into account the needs of 
both instructors and students. 

With the three design goals in mind, we iteratively revised our 
probe system to enhance instructors’ ability to navigate, track, and 
set alerts to understand real-time collaborative programming learn-
ing patterns. The resulting VizGroup user interface has three main 
panels (Figure 3): (1) a three-level view of collaborative learning 
behaviors that ofers insights into collaboration at varying lev-
els of abstraction; (2) a notifcation panel that display user- and 
AI-suggested notifcations; and (3) an information table that lists 
metrics related to team activities and coding performance. These 
panels are interconnected through data-binding, thus ensuring that 
selecting a subset of data in one panel will automatically update 
the corresponding views in the other panels. 
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Figure 4: Overview of collaborative learning visualization with Group, Structure, and Individual Views, switchable by zooming. 
Features: (1) Area highlight for inspecting multiple points, (2) History trace of data points upon selection, (3) Structure View 
plots participants against conversation topics, (4) Group data point location changes with topic or participation shifts, (5) 
Arrows indicate participation levels, (6) Flashing efect for changes in pass rates or interactions. 

5 VIZGROUP 
VizGroup was implemented as a web-based visualization tool using 
React and D3.js for its core functionality and OpenAI’s GPT-41 and 
text-embedding-3-large2 for specifc features. 

As VizGroup expanded on the probe VA system, it shared sim-
ilar features including (1) a chat panel that utilized the LLM to 
analyze group and individual activity (Figure 3.7 and 2.3), an LLM 
summary of group discussion topics (Figure 3.6 and 2.4a,b) and a 
class performance panel (Figure 3.4 and 2.2). We also modifed the 
detailed information table to display an aggregated list of conversa-
tion topics when the Group view was selected on the scatterplot or 
an aggregated list of student code errors when the Individual view 
was selected on the scatterplot. 

During a class session, VizGroup recorded data on an individual 
student and on a group level (Table 1). On an individual level, Viz-
Group tracked each student’s pass rate, activity level, and type of 
code errors. On the group activity level, it tracked the average pass 
rate of the group, the activity level of the group, the group’s conver-
sation topic, and the team structure of the group. We chose these 
fve dimensions because of their critical importance, as highlighted 
by previous research [52, 64, 66], and based on the preferences and 
experience of instructors from the formative study and the data we 
have. Pass Rate serves as a proxy for students’ progress in under-
standing and utilizing the learning objectives, while Activity Level 
indicates students’ engagement in collaboration. Likewise, Team 
Structure refects students’ participation at a group level. Code Issue 
highlights errors as identifed by the compiler in their submissions, 

1https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo 
2https://platform.openai.com/docs/models/embeddings 

and Conversation Topic reveals what students encounter in their 
collaborations. 

5.1 Three Level View of Collaborative Learning 
To facilitate the visualization of diferent levels of detail during 
collaborative learning (DG1), VizGroup uses a three-level view en-
compassing high-level group performance and activty (i.e., Group 
View), the mid-level group interaction structure (i.e., Structure 
View), and low-level individual performance and activity (i.e., Indi-
vidual View). Based on the fndings from the preliminary studies, 
each view was designed to reveal specifc patterns and insights 
about the collaborative learning environment and highlight key 
behavioral analytics that were identifed in our research. 

Figure 5: Clicking on a group data point displays its informa-
tion summary panel, and activity and performance table. 

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/embeddings
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5.1.1 Group View: This view presents an aggregated perspective 
of the group’s collaborative interactions, enabling instructors to 
gauge the average group activity level (y-axis) and average group 
pass rate (x-axis) over time (Figure 4). By aggregating data over 
collective activities, this view facilitates an understanding of group 
dynamics and collaborative patterns at a glance. 

5.1.2 Structure View: This view maps the current topics of dis-
cussion (x-axis) against the number of active members in a group 
(y-axis), ofering a detailed snapshot of group dynamics (Figure 4.3). 
We implemented a topic modeling approach to assess the relevance 
of each chat message and to distill the overarching subjects of discus-
sion. Initially, we utilized an LLM to generate text embeddings for 
each conversation, which serve as a nuanced representation of the 
discussions’ content. These embeddings were then clustered using 
the K-means++ [4] algorithm, a method chosen for its efciency and 
reliability in grouping semantic word representations [18]. For each 
identifed cluster, we produced a concise summary that captures 
the essence of the conversations within. To ensure a streamlined 
and coherent compilation of conversation topics, we compared 
new summaries with existing ones. If a newly generated summary 
closely matched any of the previously established summaries, we 
classifed it under that pre-existing category. 

We integrated graph representations and incorporated indicators 
of activity levels directly within the view to simplify the analysis 
process for instructors. As the activity levels or the discussion 
topics change, each group cluster data point will transition to a 
diferent position of the visualization (Figure 4.4). Each group’s 
communication pattern is also depicted using arrows to indicate 
the sender and the recipient of chat messages, with the arrow’s 
thickness representing the level of activity amongst group members 
(e.g. no messages , few messages ,many messages ; 
Figure 4.5). The thickness of the arrow is calculated by: 

min(� × 0.25, 2) + 1 

where A is the activity level of the individual. The green dots indi-
cating that students passed all unit tests, whereas the pink indicated 
they did not fully pass all unit tests. When there were updates to the 
group conversation topics or the number of active members, a fash-
ing animation was applied to the changed data point to catch the 
instructor’s attention (Figure 4.6). To prevent information overload, 
VizGroup displayed up to eight group structures with the lowest 
pass rate simultaneously. Expanding the lowest performing groups 
would enable instructors to identify if group activity contributed 
to the low pass rates. 

5.1.3 Individual View: This view enables instructors to assess each 
student’s engagement (y-axis) and performance (x-axis) closely 
(Figure 4). It was designed to highlight individual behaviors, such 
as students who might be struggling or feeling excluded, in rela-
tion to their peers’ progress. This view aids instructors in quickly 
identifying students in need of additional support or those who are 
excelling and can potentially serve as resources for their peers. 

5.1.4 Interaction. To support seamless navigation across these 
views (DG1), VizGroup enables instructors to zoom in and out. 
Selecting a region (Figure 4.1) or clicking on a data point provides 
further insights in the detailed information list and the group details 

panel (Figure 5). Clicking on a data point will also show the trace 
history of the selected data point, which enables instructors to view 
changes in performance over time (Figure 4.2). 

5.2 Notifcations for Observing Student Activity 
Inspired by Fluid UI, where an infux of information is structured 
automatically to reduce the gulf of evaluation [49], we designed a 
structured notifcation system that enables instructors to create and 
customize notifcations that alert them about key changes in student 
activity that might require attention and intervention. Specifcally, 
we introduce the concepts of Tracker and Alert to help instructors 
to observe changes in student progress. 

Notifcations are displayed as two columns: Suggested Notifca-
tions (Figure 3.2) and Active Notifcations (Figure 3.3).Instructors 
can add and edit existing trackers or alerts in the Suggested Notif-
cation panel before activating it. After activation, the notifcation 
will appear in the Active Notifcations panel, where it will start 
tracking real time data and push alerts based on instructor-specifed 
criteria. 

5.2.1 Trackers (Figure 6). Trackers are visualizations that display 
the current count of student activity attributes. Instructors can se-
lect a variable to be tracked by clicking on the highlighted attribute, 
which will reveal three options: Code Issues, Conversation Topics, 
and Members Participated (Figure 6.1). They can display the visual-
ization as a bar chart that shows the count of each values within 
a specifc attribute (e.g., Code Issues are grouped by the count of 
diferent errors, Conversation Topics are grouped by the count of 
diferent groups of conversation summaries whereas Members Par-
ticipated is grouped the the total number of active participants in 
the group). They can also view a time-series line plot that displays 
the changes in the diferent groups of the selected attribute from 
the start of the session until the current time (Figure 6). Instructors 
can toggle between the two visualization easily (Figure 6.2). 

Figure 6: Trackers visualizes student activity data using bar 
charts and line charts. (1) Instructors choose the student 
activity attribute to be tracked and (2) can switch between 
the two visualization. 
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Student Group Description Range 

Pass Rate ✓ ✓ The percentage of correct unit test passed by [0%, 100%] 

Activity Level ✓ ✓ 
each student or group 
The level of participation in a group discussion 
based on chat frequency 

[0.0, 12.0] 

Code Issues 

Conversation Topic 

✓ 

✓ 

The code error message in each student sub-
mission 
Each group’s topic summary based on their ex-
isting chat messages. Individual conversation 
topics is tagged by LLM (Figure 2.4b) but is not 
used in visualization and notifcations. 

No Compiling Error, Type Error, Name Error, 
Indentation Error, Index Error, Syntax Error 
Varies, example topics include Correcting Func-
tion Logic and Syntax Errors, Troubleshooting 
Code and EOF Errors 

Team Structure ✓ The number of students active in each group [0,3] 
Table 1: The student activity attributes that are tracked in VizGroup. 

Figure 7: Alerts notify instructors if students/groups meets the defned criteria. (1) Count of data points/groups that matches 
specifed criteria, (2) Alert type (group or individual), (3) Notifcation creation reason, (4) Trigger criteria (modifable via 
highlighted area click), (5) Criteria selection drop-down menu, (6) Clickable current data points meeting criteria, displayed on 
scatter plot and detail panels.(7) Instructors can change between using a spatial threshold or a temporal threshold. (8) Instructors 
can preview data points on the scatter plot. (9) An alert activation confrmation is sent to the list of Active Notifcations. (10) 
Instructors can select the attributes to be included in the threshold. (11) Flashing Animation when alert is triggered. 

5.2.2 Alerts (Figure 7). Drawing from previous research on the topic, the collective pass rate, team structure for group analysis, 
use of visual aids to signal the current status of groups in online and code issues, activity levels, and individual pass rates for indi-
breakout rooms and alerts that monitors abnormal activity in com- vidual analysis (Table 1). However, the alert card shows the alert 
plex systems [8, 52], Alerts function as a tool for tracking when type (group or individual) (Figure 7.2), the reason why the alert is 
student behaviors or group interactions surpass limits set by in- created (Figure 7.3), the current criteria for the alert (Figure 7.4), 
structors. They encapsulate the activity level, group conversation the list of data points that currently satisfes the criteria (Figure 7.6) 
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Figure 8: Temporal Alert mechanism in 2-Dimension. Data 
points which remained in the highlighted area for more than 
2 minutes will be reported. 

Figure 9: Spatial Alert mechanism. VizGroup will notify in-
structors when the number of data points in selected area 
(10 data points) exceeds defned threshold (2 data points). 

and the total number data points in the list (Figure 7.1). Instructors 
can modify the types of activity attributes they want to be alerted 
about (Figure 7.10). For each attribute, clicking on the highlighted 
area reveals a drop down menu (Figures 7.4), allowing instructors 
to modify its threshold values (Figure 7.5). 

Alerts can be activated spatially or temporally. For spatially, 
the alert is activated when the quantity of students surpassing 
a predetermined threshold exceeds n (e.g., alert instructors when 
the number of students that has a pass rate lower than 50% and an 
activity level from 0 to 3 is more than 10; Figure 9). These alerts 

Figure 10: User interaction with the UI creates suggested 
alerts, displaying user clicks as the main reason for notifca-
tion generation (1). Interacting with data points in Structure 
View suggest alerts based on the conversation topic and the 
number of active members in the group (2). Interacting with 
the detailed list of group topics would suggest topics based 
on the expanded drop down (3). 

are based on a 5-dimensional model of student activity attributes. 
Instructors receive notifcations when the number of students that 
falls under the predefned student activity range, allowing for timely 
interventions. 

Temporally alerts are activated when specifc groups or students 
surpass the predetermined threshold for a duration exceeding t 
seconds or minutes (e.g., alert instructors of all students that discuss 
correcting function logic and syntax errors in their group conversation 
and have a pass rate between 0% and 41% for over 2 minutes; Figure 8). 
Consider setting an alarm clock, where a clock will sound when the 
time is up. Alerts use a similar idea where each datapoint that meets 
the user defned criteria has an internal alarm clock, keeping track 
the amount of time they meet the defned criteria. When the time 
is up for each individual datapoint, namely the period of time they 
meet the criteria exeeds the user defned time, it will push an alert 
which will display the datapoint to the instructor for further investi-
gation. After defning the alert criteria, a curated list of groups and 
students that meets the threshold enables instructors to examine 
associated group details (Figure 7.6). Moreover, VizGroup provides 
an option for instructors to preview and visualize data points that 
currently align with alert criteria, ofering a macroscopic view of 
the tracked groups’ spatial distribution (Figure 7.8). By clicking on 
the time or number icons (Figure 7.7), instructors can transition 
between these alert types. 

After confrming the alert thresholds by clicking the green check 
mark, the alert transitions to an Active Notifcation (Figure 7.9). The 
alert then invokes a fashing animation to ensure that instructor is 
aware of any updates (Figure 7.11). 

5.3 Context-Aware Suggestions 
With the rapidly changing nature of student behavior during a 
large-scale activity, it could be challenging to monitor and create 
notifcations. Thus, VizGroup generates suggested alerts and track-
ers as templates to help instructors identify key patterns in student 
activity that might be hard to notice by observing the scatter plot 
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Figure 11: Workfow for generating Suggested Notifcations. 

and topic list of details. Suggested Notifcations were generated 
based on user interaction with the VizGroup interface and historic 
changes in student activity data 

5.3.1 User Interaction. VizGroup generates suggested notifcations 
for the scatter plot view currently in use. Specifcally, group alerts 
will be suggested when instructors are in group and structure view 
and individual alerts will be suggested when instructor is in indi-
vidual view. Instructors could also create notifcations by selecting 
areas of interest on the scatter plot. When they click on a specifc 
data point, VizGroup derives a suggestion on student activity at-
tributes to be tracked based on the displayed view of the scatter plot. 
For the Structure View, it would suggest alerts based on the selected 
group conversation topics and the number of team members active 
in the group (Figure 10.2). For the Group and Individual view, it 
would suggest alerts based on group or individual activity level 
and pass rate. When the instructor highlights an area in the scatter 
plot, the x and y range of the selected area will be automatically 
applied towards the suggested notifcation, enabling instructors 
to select data points to keep track of through direct manipulation. 
Instructors can use such suggestions as templates to further modify 
alerts to suit their needs. Similarly, when instructors inspect the 
rows of the aggregated topics and errors in the detailed information 
table, suggestions are based on the expanded row (Figure 10.3). 

5.3.2 Historic Student Activity Data. When instructors are tracking 
more than 3 attributes that can’t be easily represented on a 2D 
visualization or creating notifcations that take into account historic 
student activity, they may neglect to consider recent student activity 
that might be relevant. Hence, VizGroup leverages an LLM that 
takes historic student activity data into account while generating 
alert suggestions for instructors. Suggestions for individual student 
and group data are processed separately, and depending on the 
current view, group or individual related alerts will be suggested. 
Here we outline the steps the LLM used to generate suggested 
alerts using historical student activity data. The steps for suggesting 
group and individual notifcations are similar (see Figure 11), so we 
outline the process of suggesting group notifcations for the sake 
of simplicity (see all used prompts in Appendix A). 

Step 1: Identify Issues By Analyzing Historical Student Activity 
Data. Following prior work on using LLM to identify challenges 
in students’ learning and collaborations [57], we asked the LLM to 
analyze each group’s history of submission attempts, group conver-
sation logs and current status data such as group pass rate, team 
activity, the summarized group topic, and the number of members 
participating in the group discussion. After this holistic evaluation 
of group performance, we asked the LLM to identify specifc issues 
each group was facing. Some examples of issues were no active 
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conversation despite submission attempts or group members asking 
for help but the conversation lacked problem solving. 

Step 2: Rank Groups by Issue Seriousness. After identifying issues 
across groups, we asked the LLM to rank each group based on the 
severity of the issue, with major issues ranked higher and minor 
issues ranked lower. Here a high severity issue is defned as an issue 
that might require instructor and teaching assistant intervention, 
while a low severity issue can be handled by students in the group. 
Then, the LLM summarized the identifed issue into one sentence 
for each group. Based on prior work that used LLMs to perform 
recommendation tasks, we adopted a list-wise ranking approach 
to rank the identifed issues to achieve a balance between cost and 
performance [17]. The LLM also noted the most problematic issue 
out of their pass rate, the relevance of their conversation to the task, 
their topic of conversation, and their participation levels during 
discussions. 

Step 3: Use the Top 5 Groups for Summarization and Issue Catego-
rization. We then used the top 5 groups with the most severe issue 
and asked the LLM to summarize the common problems found 
across these 5 groups. Based on this summary, the LLM then identi-
fed which aspects of pass rate, the relevance of their conversation 
to the task, their topic of conversation, and their participation levels 
during discussions were present in the summary. 

Step 4: Generating Suggestions for Alerts and Trackers. From the 
extracted groups/students, we calculated the range of categorical 
and numeric data for the alerts. For categorical data, we obtained 
the set of all values found in the extracted groups/students. For 
numerical data, we obtained the global minimum and maximum 
across the 5 groups/students. For all annotated topics summarized 
in Step 2, we then aggregated the count based on the pass rates, the 
relevance of their conversation to the task, the topic of conversation, 
and participation levels during discussions in the summary, and 
tracked the most frequent categorical data. 

The primary objective of utilizing LLMs in the suggestion gener-
ation process is to identify complex patterns in students’ code and 
text-based discussions, transforming these into easily inspectable 
suggestions to support instructors’ learning analytics. To enhance 
accuracy, we also adopted state-of-the-art prompting engineering 
techniques such as few-shot prompts [7] and AI-chains [62]. 

6 SYSTEM EVALUATION 
We conducted an in-person user study to examine VizGroup’s us-
ability and efectiveness. We also investigated participants’ expe-
riences when using VizGroup’s suggestion feature by including a 
condition of VizGroup’s ablated version in the study. 

6.1 Participants 
We recruited 12 participants (5 females and 7 males) who had ex-
perience teaching programming courses at four-year universities 
via personal networks, local mailing lists, and snowball sampling. 
During the study, participants were asked to interact with Viz-
Group under diferent conditions to inspect student behavior that 
was collected in a large programming course at our institute. Each 
participant was compensated with $25 USD for their time and efort. 

6.2 Protocol 
6.2.1 Live Simulation. During the study, participants watched live 
playback of the session to simulate a real-time, in-class peer instruc-
tion session. To ensure the data participants interacted with was 
authentic, we used real data captured from a large-scale introduc-
tory level university programming course’s peer instruction session 
that contained 111 students that were divided into 37 groups. The 
grouping strategy was to gather students who passed the test with 
those who did not and ensure each group had at least one student 
who passed the test. During the peer instruction process, students 
accessed the system through their laptops. They were not able to 
see group members’ real names and their code submissions. The 
programming exercise for the session was an introductory Python 
problem to count the number of elements under 100 in a given list 
of numbers. 

6.2.2 Conditions. We used a mixed study design that incorpo-
rated both within-subject and between-subject methods, where 
each participant used the system under two of the following three 
conditions: 

• Baseline (A): a baseline version of VizGroup without any intelli-
gent or automatic features such as notifcations, topic summaries, 
and team activities (i.e., without (2), (3), and topics in (5) and (7) in 
Figure 3. The system still contained the interactive visualization. 

• VizGroup without suggested notifcation (B2): an ablated 
version of VizGroup without the context-aware suggestion fea-
ture. This version still had the notifcation feature, but all notif-
cations needed to be manually created. 

• VizGroup (B1): a full AI-assisted version of VizGroup with all 
its features. Notifcation suggestions are dynamically generated 
in B1. Interaction-based suggestions were triggered by users’ 
interaction, while the system displayed a new historic-based 
suggestion every 15 seconds. 

6.2.3 Tasks. All participants completed two types of tasks: 

• Quiz. Each quiz contained two classifcation questions: 
– Q1: Identify students who have not passed the test and only 
sent irrelevant messages in the chat. 

– Q2: Identify groups with specifc difculties and track those 
who were stuck for two minutes. 

• Open-ended task. Each participant was asked to create notif-
cations to identify students or groups that needed a TA to help 
them while monitoring the class for two minutes. 

The quiz questions were designed to evaluate the system’s abil-
ity to enable participants to overview, narrow down, and track 
nuances throughout the class. The open-ended task sought to eval-
uate participants’ experiences with the customized usage of the 
notifcation feature to track students’ behavior and groups’ interac-
tion over time. These questions were derived from our formative 
study and iterated on. While participants watched the playbacks 
from one session under both conditions, we used the same clips 
from the playback for open-ended tasks (between-subject) and used 
diferent clips with counterbalanced order for the quiz questions 
(within-subject) to reduce overhead costs (e.g., getting familiar with 
an exercise). We also counterbalanced the conditions to reduce 
potential learning efect. 
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Figure 12: Survey responses after the open-ended tasks. For the NASA-Task questions [27] (up), 1 indicated very low levels of 
mental demand, temporal demand, successful performance, efort, and frustration. For the ease of use and usefulness questions 
(down), 1 was very negative and 7 was very positive. 

6.2.4 Study Procedure. At the beginning of each study session, the 
study coordinator collected informed consent from the participant. 
Then, the study coordinator gave an explanation of the context of 
the data and the tasks used in the study. Following this, partici-
pants completed two quizzes under two assigned conditions after 
watching the tutorial of the corresponding system and warming up. 
After that, participants were asked to work on the open-ended task 
with the condition equipped with the notifcation feature. Addi-
tionally, they completed a short survey with Likert scale questions 
and participated in a semi-structured interview after each quiz and 
open-ended task. Participants were asked to think aloud during the 
open-ended task and the surveys. Each session took around 60-75 
minutes. All study sessions were screen- and audio-recorded. 

6.3 Results 
6.3.1 Qantitative Results. We combined the results from the two 
conditions (B1, B2) with the notifcation features as the quiz ques-
tions did not involve the use of the historic-based suggestions (Table 
2). The results showed that participants who used VizGroup had 
shorter times, higher recall, and higher precision on Q1, and signif-
icantly shorter time and higher recall on Q2. 

In the open-ended tasks, participants using VizGroup received 
18.26 (� = 1.21) notifcation suggestions on average. Among all 
the suggestions, there were 13 types of notifcations categorized by 
activity attributes while 11 of them were accepted by participants. 
Participants created more notifcations for both students (VizGroup: 
���� = 2.67, � = 1.37, VizGroup without suggestion: ���� = 
2.00, � = 1.26) and groups (VizGroup: ���� = 3.00, � = 2.10, 
VizGroup without suggestion: ���� = 2.50, � = 1.64). In total, there 
were 25.93% more notifcations created using VizGroup (VizGroup: 
���� = 5.67, � = 3.44, VizGroup without suggestion: ���� = 
4.50, � = 2.81). There was not a statistically signifcant diference 
in the number of created notifcations. Of 5.67 created notifcations 
using VizGroup, 2.50 (� = 2.95) of them are from historic-based 
suggestions, 2.67 (� = 1.21) of them are from interaction-based 
suggestions, and 0.50 (� = 1.22) are manually created. 

Condition Time 
Q1 

Prec. Recall Time 
Q2 

Prec. Recall 

Baseline 348 0.72 0.73 338 0.97 0.82 
VizGroup 224∗ 0.98∗∗ 0.96∗∗ 251∗∗ 1.00 0.98∗∗ 

Table 2: Quiz Performance (Time in seconds). The best results 
for each condition is in bold. ∗ indicates � < 0.05, while ∗∗ 
indicates � < 0.01. 

6.3.2 Context-Aware Suggestions Facilitated Awareness of Unex-
pected Paterns. Based on our observation and the think-aloud pro-
cess, we found that participants (P3, P9, P11) not only adapted 
suggested notifcations so that they aligned with their mindsets, 
but also accepted those diferent from their initial strategy. For 
instance, P3 stated “I care about the pass rate, not the type of code 
issues” at the beginning of the notifcation creation phase. However, 
this participant’s mind was changed after inspecting the suggested 
alert that contained criteria about a Code Issue. The participant 
accepted the suggested criteria since the selected students within 
the notifcation “makes sense”. Moreover, in the following moni-
toring process, the participant created more notifcations for Code 
Issue, which was the criterion the participant did not want to pay 
attention to at the start. 

We also noticed that participants exhibited a low level of mental 
demand (������ = 2.00, � = 1.38) using VizGroup, while those par-
ticipants who used VizGroup without suggestion gained a medium 
level of mental demand (������ = 3.50, � = 1.94) to complete the 
open-ended tasks (Figure 12). 

6.3.3 Context-Aware Suggestions Increased the Diversity of Noti-
fications. During the open-ended tasks, the notifcations created 
with VizGroup were 35.14% more diverse than the ablated version 
of VizGroup (Number of notifcations containing diferent types 
of criteria–VizGroup: ���� = 4.50, � = 2.66, VizGroup without 
suggestion: ���� = 3.33, � = 1.63; not statistically signifcant). For 
instance, before inspecting the suggested notifcation, P3 only cre-
ated a notifcation about Pass Rate and Activity Level, however, after 
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inspecting and adapting suggested notifcations, P3’s notifcations 
covered all of the criteria. 

In contrast, P5 created 3 notifcations for students using Viz-
Group without suggestion. However, among these notifcations, 
the only diference was in the categories selected for Code Issues. 
P5 followed the same scope during the notifcation creation pro-
cess, which was how most participants (P2, P4, P5, P8) commonly 
worked with VizGroup without suggestion. 

6.3.4 VizGroup Aided Instructors In Identifying and Tracking Pat-
terns and Work in Parallel. For Q2, most participants who used 
VizGroup checked other groups’ behaviors, while most participants 
who used the Baseline kept monitoring the required groups, i.e., “It 
is not that hard for me to monitor a group (with the same patterns) 
of students, but it would be impossible if there are multiple groups 
to track.” (P4). As P3 suggested, with the notifcation system, in-
structors “could set alerts so that (they) don’t need to look at those 
conditions all the time.” 

Nine participants mentioned the notifcation (with or without 
suggestion) would be helpful to “teach a 100/200 people programming 
class”. “(VizGroup) Makes it much more convenient and feasible so 
you don’t have to keep checking.” (P10). 

A lower level of temporal demand (������ = 1.00, � = 0.51) was 
reported with the notifcation suggestions feature, compared to 
using the VizGroup without suggestion (������ = 2.00, � = 1.47), 
however, this diference was not statistically signifcant. 

6.3.5 VizGroup Enables Instructors to be Prepared Before Sending 
Support. Participants (P2, P3, P6, P9) also found that based on the 
meaning of the constraints applied to the alert, they could make 
more sense of how to help students with diferent types of dif-
culties. P6 suggested that “The topics flter can help professors/TAs 
prepare beforehand to help students instead of just going up to them 
and asking what they’re struggling on.”, while P9 also expressed “hav-
ing diferent alerts to monitor diferent groups of students’ behavior, 
so I can tell TA who can ofer help in those diferent situation.” 

7 DISCUSSION 
Our study revealed several interesting insights about the automatic 
creation of notifcations to assist with the monitoring of student 
progress in large classes. These insights related to instructor work-
fows, instructor decision making, and long-term student benefts 
of using such systems. 

7.1 VizGroup’s Impact on Instructor Workfows 
Instructors often tend to follow their mental model to set specifc 
constraints to identify students’ behavior in peer instruction ses-
sions. However, instructors’ strategies and workfows may vary 
from the monitoring system’s intelligence level. For instance, in our 
baseline system, participants had to manually browse and process 
most of students’ behaviors and interactions, while in the VizGroup 
without suggestion, participants began by using abstraction data 
(e.g., Conversation Topic, Activity Level). Based on the study results, 
when the system starts to generate things beyond summarization, 
e.g., providing users with suggestions, instructors’ strategies to 
identify students can also be infuenced. 

This is consistent with fndings in Explainable AI, which re-
ported that the misalignment of decision-making criteria can afect 
users’ levels of reliance on AI’s recommendations [5]. Ideally, we 
want instructors using VizGroup to perform better than either AI 
or themselves alone, yet this may be elusive due to the dynamic 
context in a classroom setting. Our study fndings suggest that 
instructors are infuenced directly and indirectly by exposure to 
the recommended notifcations while still maintaining their own 
control over creating them. This provides new perspectives on 
human-AI collaboration in real-time data analytics tasks. 

7.2 Supporting Instructors’ Decision Making 
Beyond tracking students’ particular behavior and learning barriers, 
VizGroup might also provide instructors with a way to make sense 
of students’ issues and suggest a solution regarding students’ issues. 
Prior work has shown that observable signals such as code com-
pletion or test case pass rates may not always align with students’ 
actual understandings during PI [47]. VizGroup’s recommended no-
tifcation adapts to students’ history data using students’ behavior 
level information, providing instructors with insights from diferent 
perspectives. 

7.3 Long-Term Student Benefts 
VizGroup provided an opportunity for instructors to create diverse 
notifcations and probe behavior patterns that were diferent from 
the instructors’ common scope of behavior identifcation. This is 
helpful because prior work has suggested that with diverse mental 
models, students will often encounter new mistakes even on the 
same coding problem [1]. VizGroup shows that it can support in-
structors in identifying alternative learning patterns by adapting to 
students’ behaviors in real time, helping students to be more likely 
to receive personalized feedback. 

7.4 Limitations 
There are several limitations to our user study. While we used au-
thentic code and peer discussion data, we conducted the study in 
a simulated setting rather than in a real living classroom, which 
reduced the psychological intensity and potential for distraction 
among participants. Despite a high level of participants-reported 
usefulness and increases in both quantity and diversity of notif-
cations using VizGroup in our lab study, instructors did not vali-
date/interact with real students. Future research can also investigate 
instructors’ processes for validating AI-generated content, particu-
larly student-related information, in real-time classroom settings. 

The discussion and submission data is only captured from one 
session during one class, which means that the result may not be 
generalizable to other contexts. Likewise, our evaluation of Viz-
Group used a dataset from a large programming lecture, limiting 
the scope to large-scale data. We suspect that participants spent 
less time on pattern identifcation and verifying notifcations when 
dealing with smaller datasets, as there was less information to pro-
cess. Future research can further explore the relationship between 
data size and visualization complexity. 

Additionally, there are some limitations to our system. First, 
the choice of collaborative learning aspects used for generating 
notifcations was limited to Pass Rate, Activity Level, Code Issue, 
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Conversation Topic, and Team Structure. Second, it is difcult to 
scale the number of notifcations to help users understand and 
navigate the system. Moreover, the use of LLM could raise several 
concerns regarding stability, transparency, and trust. Though our 
approach adopted prior work’s methods [17, 57] that was examined 
through metrics (e.g., F1, NDCG@K), further evaluation of LLMs’ 
capabilities in learning analytics is necessary. Lastly, our approach 
to generating notifcation suggestions faces limitations in handling 
context length when there are numerous messages or submissions. 
This issue could be mitigated with context management techniques 
in future work. 

8 CONCLUSION 
In this paper, we introduced VizGroup, a novel system that helps 
programming instructors create notifcations, such as alerts and 
trackers, to better manage students’ in-class Peer Instruction ac-
tivity. It achieves this by leveraging LLMs to adapt time-sensitive 
contextual information, such as historical data changes, and recom-
mends urgent notifcation units for instructors to monitor. Through 
our comparison study, we found that with our notifcation rec-
ommendations, participants discovered patterns that they were 
previously unaware of, and that the created notifcations covered 
a more diverse range of collaborative learning metrics that led to 
changes in their creation strategies. Our work contributes new 
understandings and design lessons to real-time, large-scale collabo-
rative learning analytics for domain experts who are novice users 
of Visual Analytics. Collectively, this opens a new door for building 
systems that support in-class collaborative learning at scale. 
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A APPENDIX A: PROMPTS 
Below are the prompts used to generate the suggested notifcations. 

A.1 Rank Groups by Issue Seriousness 
System Prompt: 
You are an Instructor tasked with identifying struggling 
groups with potential performance/communication issues 
and ranking them based on the seriousness of their 
issues from the given JSON data below about student 
groups’ recent activities around solving the programming 
problem. 

The output format is in JSON type: 

Programming Problem: Write a function called under100 that 
accepts a list of integers and returns the number of values in the 
list that are less than 100. 

Task: 
(1) Analyze each group’s submission history, message history, 

and current status and identify the issues the group has. For 
instance, issues can be: "no active conversation", "insufcient 
submission attempts", "keep discussing a problem but no 
increase in pass rate", "members were asking for help but 
did not receive any from teammates", or "the main content 
of the conversation is not related to class", etc. 

(2) Rank groups based on the seriousness of their issues based 
on the content of issues and groups’ current performance 
(pass rate and activity level). For every group, you also need 
to record the aspect that you think the group has the most 
serious trouble with from the following list: ["pass rate", 
"amount of related messages in the conversation ", "topic 
of conversation", "member’s participation in discussion"]. 
At last, summarize the issues you identifed in [Task 1] in 
one short sentence. (Make sure all groups in the input are 
included in the output) 

Input Format (JSON): A collection containing group objects (the 
key of the object is group’s id). For each group, there are several 
components: 
-currentStatus: [object] containing information about 

group's current status, including: 
-groupPassRate: [numeric] group's average passrate 
-teamActivity: [numeric] group's activity level 
-membersParticipatedNum: [numeric] number of members 

participated in the discussion 

-errorType: [string] type of the error of the code 
submission 
-errorMessage: [string] error message of the code 
submission 
-groupPassRate: [numeric] group's average passrate after 
this submission 

-messageHistory: [Array] a list of message records in the 
group, each containing: 

-time: [numeric] time the message was sent (second) 
-message: [string] the content of the message 
-sender_id: [string] the id of the student who sent the 
message 
-senderActivityLevel: [numeric] the student's activity 
level at that time 
-senderPassRate: [numeric] the pass rate of the sender 
when the message was sent 
-activity: [string] the category of this message 
-topic: [string] the summarized topic of the group 

discussion when the message was sent 
-currentActivityLevel: [numeric] group's team activity 
level at that time 
-currentPassRate: [numeric] group's pass rate at that time 

Input Example (JSON): 

{"groupHistory":[ 
"qfNSCzEM1adKuYg8fS6s": { 

"currentStatus": { 
"groupPassRate": 33.333333333333336, 

"teamActivity": 0, 
"membersParticipatedNum": 0, 
"topic": "No Conversation" 

}, 
"teamMembers": [ 

"kcufXPSXQdUrxgHMv5lh", 
"RLF72ACbWtDW1b0DzQ15", 
"Yvodndj3W2Ig8EdcymB6" 

], 
"submissionHistory": [ 

{ 
"time": 68, 

"student_id": "kcufXPSXQdUrxgHMv5lh", 
"result": "not pass", 
"errorType": "TypeError", 

"errorMessage": "'int' object is not 
-topic: [string]: the summarized topic of the group discussion subscriptable", 

"groupPassRate": 33.333333333333336 
-teamMembers: [Array] a list containing members' ID }, 

{ 
-submissionHistory: [Array] a list of code submission records "time": 99, 
from members of the group, each record containing: "student_id": "kcufXPSXQdUrxgHMv5lh", 
-time: [numeric] time the submission was made (second) "result": "not pass", 
-student_id: [string] the id of student who made the "errorType": "SyntaxError", 
submission "errorMessage": "invalid syntax", 
-results: [boolean] whether the code submission has passed "groupPassRate": 33.333333333333336 
the test } 
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], 
"messageHistory": [] 

}, 
"rDJkBCxbE5NAdFSlWApx": { 

"currentStatus": { 
"groupPassRate": 33.333333333333336, 
"teamActivity": 3.6666666666666665, 
"membersParticipatedNum": 2, 
"topic": "Correcting Function 
Implementation for Counting" 

}, 
"teamMembers": [ 

"rMInc3JASsCmwXFN6ZKH", 
"VN8tUFi6ZCcXye9S2Nxw", 
"oAKti7KYiXSKIanUBONs" 

], 
"submissionHistory": [], 
"messageHistory": [ 

{ 
"time": 21, 

"message": "where is a count used?", 
"sender_id": "rMInc3JASsCmwXFN6ZKH", 

"senderActivityLevel": 2, 
"senderPassRate": 0, 
"activity": "help-seeking", 
"topic": "Correcting Function 
Implementation for Counting", 
"currentActivityLevel": 
2.3333333333333335, 

"currentPassRate": 33.333333333333336 
}, 
{ 

"time": 27, 
"message": "or what for I mean", 

"sender_id": "rMInc3JASsCmwXFN6ZKH", 
"senderActivityLevel": 3, 
"senderPassRate": 0, 
"activity": "help-seeking", 
"topic": "Correcting Function 
Implementation for Counting", 
"currentActivityLevel": 
2.6666666666666665, 

"currentPassRate": 33.333333333333336 
}, 
{ 

"time": 78, 
"message": "it initializes your 

count value so the code knows where 
to start", 

"sender_id": "oAKti7KYiXSKIanUBONs", 
"senderActivityLevel": 5, 
"senderPassRate": 100, 
"activity": "help-giving", 
"topic": "Correcting Function 
Implementation for Counting", 
"currentActivityLevel": 3, 

"currentPassRate": 33.333333333333336 

}, 
{ 

"time": 115, 
"message": "wait so is it asking for 
a list of the numbers or the amount 

of numbers that are below 100", 
"sender_id": "rMInc3JASsCmwXFN6ZKH", 

"senderActivityLevel": 4, 
"senderPassRate": 0, 
"activity": "help-seeking", 
"topic": "Correcting Function 
Implementation for Counting", 
"currentActivityLevel": 
3.3333333333333335, 

"currentPassRate": 33.333333333333336 
} 

] 
}, 

]} 

Output Format (valid JSON): A list of ranked group objects (Make 
sure to include all groups in the input), each containing: 
- rank: The rank of this group based on the seriousness of 
its issues 
- id: [string] The id of this group 
- aspect: [string] The aspect that you think the group has 
the most serious trouble with 
- issue: [string] A short-sentence summary of the group's 
issues identified in [Task 1]. 

Output Example (valid JSON): 
{"rankedGroupList":[ 

{ 
"rank": 1, 
"id": "qfNSCzEM1adKuYg8fS6s", 
"aspect": "amount of related messages in the 
conversation", 

"issue": "No active conversation despite submission 
attempts." 

}, 
{ 

"rank": 2, 
"id": "rDJkBCxbE5NAdFSlWApx", 

"aspect": "member's participation in discussion", 
"issue": "Members were asking for help but the 
conversation lacks depth in problem-solving." 

} 
] 
} 

A.2 Rank Students by Issue Seriousness 
System Prompt: You are an Instructor tasked with identifying 
struggling students with potential performance/communication 
issues and ranking them based on the seriousness of 
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their issues from the given JSON data below about 
students’ recent activities around solving the programming 
problem. 

The output format is in JSON type: 

Programming Problem: Write a function called under100 that 
accepts a list of integers and returns the number of values in the 
list that are less than 100. 

Task: 
(1) 1. Analyze each student’s submission history, message his-

tory, and current status and identify the issues the group 
has. For instance, issues can be: "low pass rate", "insufcient 
discussion with group members", "insufcient submission at-
tempts", "keep having the same code issue for student’s code 
submissions ", "student was asking for help but no increase 
in pass rate", or "the main content of the student’s messages 
is not related to class", etc. 

(2) Rank students in descending order based on the seriousness 
(an issue with high seriousness may require you to send 
a TA to support, while an issue with low seriousness can 
simply be handled by the student who has that issue) of their 
issues based on the content of issues and students’ current 
performance (pass rate and activity level). For every student, 
you also need to record the aspect that you think the student 
has the most serious trouble with from the following list: 
["pass rate", "amount of related messages in the conversation 
", "topic of conversation", "code issue"]. At last, summarize the 
issues you identifed in [Task 1] in one short sentence. (Make 
sure all students in the input are included in the output) 

Input Format (JSON): A collection containing student objects (the 
key of the object is student’s id). For each student, there are several 
components: 
-currentStatus: [object] containing information of student's 
current status, including: 

-passRate: [numeric] student's passrate 
-teamActivity: [numeric] student's activity level 
-topic: [string]: the summarized topic of the group 
discussion 

-submissionHistory: [Array] a list of code submission 
records of the student, each record containing: 
-time: [numeric] time the submission was made (second) 
-passRate: [numeric] pass rate of the student's code 
submission 
-errorType: [string] type of the error of the code 
submission 
-errorMessage: [string] error message of the code 
submission 

-messageHistory: [Array] a list of message records of the 
student, each containing: 

-time: [numeric] time the message was sent (second) 
-message: [string] the content of the message 
-activity: [string] the category of this message (6 
categories in total: ["help-giving", "help-seeking", 

"exchanging information and feedback", "mutual 
encouragement and challenging", "joint reflection on 
progress and process", "Not Class Related"]) 
-currentTopic: [string] the summarized topic of the 
student's group discussion when the message was sent 
-currentActivityLevel: [numeric] student's team activity 
level at that time 
-currentPassRate: [numeric] student's pass rate at that 
time 

Input Example (JSON): 

{"studentHistory":{ 
"0gL8b8z4viC8SXQiQi6x": { 

"currentStatus": { 
"passRate": 0, 
"teamActivity": 1.3, 
"topic": "Repeated Greetings and Minimal 
Progress" 

}, 
"submissionHistory": [], 
"messageHistory": [ 

{ 
"time": 71, 
"message": "wassup", 

"activity": "not related to the class", 
"currentTopic": "No Conversation", 
"currentActivityLevel": 0, 
"currentPassRate": 0 

}, 
{ 

"time": 90, 
"message": "same ", 
"activity": "help-seeking", 

"currentTopic": "Repeated Greetings and 
Minimal Progress", 
"currentActivityLevel": 0.3, 
"currentPassRate": 0 

} 
] 

}, 
"DrMqavekheeqmxbSCSeg": { 

"currentStatus": { 
"passRate": 25, 
"teamActivity": 0.3, 
"topic": "Repeated Greetings and Minimal 
Progress" 

}, 
"submissionHistory": [ 

{ 
"time": 59, 
"passRate": 25, 
"errorType": "Logical Error", 
"errorMessage": "" 

}, 
{ 

"time": 82, 
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"passRate": 25, 
"errorType": "Logical Error", 
"errorMessage": "" 

}, 
{ 

"time": 103, 
"passRate": 25, 
"errorType": "Logical Error", 
"errorMessage": "" 

}, 
{ 

"time": 113, 
"passRate": 25, 
"errorType": "Logical Error", 
"errorMessage": "" 

} 
], 
"messageHistory": [ 

{ 
"time": 63, 
"message": "hi", 

"activity": "not related to the class", 
"currentTopic": "No Conversation", 
"currentActivityLevel": 0, 
"currentPassRate": 25 

} 
] 

} 
} 

} 

Output Format (valid JSON): A list of descendingly ranked stu-
dent objects (Make sure to include all students in the input), each 
containing: 
- rank: The rank of this student based on the seriousness of 
his/her issues (an issue with high seriousness may require 
you to send a TA to support, while an issue with low 
seriousness can simply be handled by the student who has 
that issue) 
-id: The id of this student (make sure the id appears in the 
input) 
-aspect: The aspect that you think the student has the most 
serious trouble with from the following list: ["pass rate", 
"amount of related messages in the conversation ", "topic of 
conversation", "code issue"] 
-issue: [string] A short-sentence summary of the group's 
issues identified in [Task 1]. 

Output Example (valid JSON): 
{"rankedStudentList":[ 

{ 
"rank": 1, 
"id": "DrMqavekheeqmxbSCSeg", 
"aspect": "code issue", 
"issue": "Repeated logical errors in code 

submissions and lack of progress despite consistent 

pass rate." 
}, 
{ 

"rank": 2, 
"id": "0gL8b8z4viC8SXQiQi6x", 
"aspect": "passrate", 

"issue": "No conversation with group members and 
minimal progress despite seeking help." 

} 
] 
} 

A.3 Extracting Group Code Issues: 
System Prompt: You are a programming Instructor tasked 
with summarizing student groups’ common performance/ 
communication issues from the given JSON data below 
about student groups’ issues while solving the programming 
problem. 

Programming Problem: Write a function called under100 that 
accepts a list of integers and returns the number of values in the 
list that are less than 100. 

Task: 
(1) Summarize the common issues based on issues and aspects 

from the input in one short sentence. 
(2) In the summarized issue description you have in [Task 1], 

identify which of the following aspects was described. 

Input Format (JSON): A list of issue objects containing: 
-issue: [string] content of 
performance/communication issues groups have 
while working on the programming problem. 
-aspect: [string] The aspect that the group has 
the most serious trouble with. ( List of 
aspects: ["pass rate", "amount of related 
messages in the conversation ", "topic of 
conversation", "member's participation in 
discussion"]) 

Input Example (JSON): 
{"groupIssueList":[ 
{ 

"aspect": "pass rate", 
"issue": "Lowest pass rate with 
multiple error types and no 
conversation." 

}, 
{ 

"aspect": "pass rate", 
"issue": "Very low pass rate and 
no active conversation." 

}, 
{ 

"aspect": "pass rate", 
"issue": "Low pass rate with 
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minimal conversation and 
participation." 

}, 
{ 

"aspect": "amount of related 
messages in the conversation", 
"issue": "No active conversation 
despite some submission 
attempts." 

}, 
{ 

"aspect": "amount of related 
messages in the conversation", 
"issue": "No conversation 
despite submission attempts." 

}, 
] 

} 

Output Format (valid JSON): 
-issueSummary: [string] The short-sentence 
summary of common issues in the input issue 
reflecting the common aspect of issues. 
-aspectList: [array] each containing identified 
aspects in the issueSummary. Candidate aspects: 
["pass rate", "amount of related messages in the 
conversation ", "topic of conversation", 
"member's participation in discussion"] 

Output Example (valid JSON): 
{“summary”:{ 

"issueSummary": "Low pass rates paired with 
inadequate or no conversation", 
"aspectList": ["pass rate", "amount of related 
messages in the conversation"] 

} 
} 

A.4 Extracting Individual Code Issues: 
System Prompt: You are a programming Instructor tasked 
with summarizing student groups’ common performance/ 
communication issues from the given JSON data below 
about student groups’ issues while solving the programming 
problem. 

Programming Problem: Write a function called under100 that 
accepts a list of integers and returns the number of values in the 
list that are less than 100. 

Task: 
(1) Summarize the common issues based on issues and aspects 

from the input in one short sentence. 
(2) In the summarized issue description you have in [Task 1], 

identify which of the following aspects was described. 

Input Format (JSON): A list of issue objects containing: 

A list of issue objects containing: 
-issue: [string] content of 
performance/communication issues 
students have while working on the 
programming problem. 
-aspect: [string] The aspect that the 
student has the most serious trouble 
with. ( List of aspects: ["pass rate", 
"amount of related messages in the 
conversation ", "topic of 
conversation", "code issue"]) 

Input Example (JSON): 
{"studentIssueList":[ 
{ 

"aspect": "code issue", 
"issue": "Repeated 
TypeError issues and 
seeking help without 
improvement." 

}, 
{ 

"aspect": "amount of 
related messages in 
the conversation", 
"issue": "Repeated 
Logical Errors and not 
related messages 
despite seeking help." 

}, 
{ 

"aspect": "pass rate", 
"issue": "Struggling 
with final test cases 
and actively seeking 
help." 

}, 
{ 

"aspect": "pass rate", 

"issue": "Improved 
pass rate through 
submissions but still 
seeking help." 

}, 
{ 

"aspect": "code issue", 
"issue": "Consistent 
Logical Errors in 
submissions." 

}, 
] 

} 

Output Format (valid JSON): 
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-issueSummary: [string] The short-
sentence summary of common issues in 
the input issue reflecting the common 
aspect of issues. 
-aspectList: [array] each containing 
identified aspects in the 
issueSummary. Candidate aspects:["pass 
rate", "amount of related messages in 
the conversation ", "topic of 
conversation", "code issue"] 

Output Example (valid JSON): 
{ 

"summary": { 
"issueSummary": "Issues with code 
errors and pass rate while 

struggling with efficient 
communication.", 
"aspectList": ["code issue", "pass 
rate", "amount of related messages 
in the conversation"] 

} 
} 

B APPENDIX B: FORMATIVE STUDY TASKS 
• Task 1: Identify groups with specifc patterns regarding progress 
in solving the exercise and participating in group discussion, 

• Task 2: Identify students who were seeking help and had unsolved 
issues, 

• Task 3: Track and understand multiple groups’ dynamics in a 
real-time setting, 

• Task 4: Understand groups’ common issues. 
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