
VizPI: A Real-Time Visualization Tool for Enhancing 
Peer Instruction in Large-Scale Programming Lectures 
Xiaohang Tang Sam Wong Yan Chen 

Xi Chen University of California, San Diego Virginia Tech 

Virginia Tech USA USA 

USA c6wong@ucsd.edu ych@vt.edu 

{xiaohangtang,xic}@vt.edu 

ABSTRACT 
Peer instruction (PI) has shown signifcant potential in facilitating 
student engagement and collaborative learning. However, the im-
plementation of PI for large-scale programming lectures has proven 
challenging due to difculties in monitoring student engagement, 
discussion topics, and code changes. This paper introduces VizPI, 
an interactive web tool that enables instructors to conduct, mon-
itor, and assess PI for programming exercises in real-time. With 
features that visualize the progress of student discussions and code 
submissions, VizPI allows for more efective oversight of PI activi-
ties and the provision of personalized feedback at scale. Our work 
aims to transform the pedagogical approach to PI in programming 
education, making it more engaging and adaptable to student needs. 

ACM Reference Format: 
Xiaohang Tang, Xi Chen, Sam Wong, and Yan Chen. 2023. VizPI: A Real-
Time Visualization Tool for Enhancing Peer Instruction in Large-Scale 
Programming Lectures. In The 36th Annual ACM Symposium on User In-
terface Software and Technology (UIST ’23 Adjunct), October 29–November 
01, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 3 pages. https: 
//doi.org/10.1145/3586182.3616632 

1 INTRODUCTION 
Peer Instruction (PI) is an instructional strategy developed by Mazur 
et al. that emphasizes students’ active construction of conceptual un-
derstanding [1]. Initially employed in physics lectures for multiple-
choice questions, students frst individually respond to a question 
(the individual vote using wireless keypads or iclickers), then en-
gage in peer discussion, and fnally cast a re-vote infuenced by 
the discussion (the group vote). Many recent studies have reported 
the benefts of PI in computing education [2] with students’ sur-
vey responses overwhelmingly endorsing the efcacy of PI for 
learning and recommending its continued usage in further courses. 
Instructors, too, beneft from a refned focus on student difculties, 
an improved ability to adapt lectures in real-time, and enhanced 
student involvement in teamwork and collaboration [4]. 

Recently, with the advent of supporting tools [3, 6], programming 
instructors have begun using in-class coding exercises — small scale 
programming exercises for students to practice during lectures or 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
UIST ’23 Adjunct, October 29–November 01, 2023, San Francisco, CA, USA 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0096-5/23/10. 
https://doi.org/10.1145/3586182.3616632 

lab — as the basis for PI activities [5]. Instead of limiting discussions 
to options with immediate neighbors in a classroom, the use of on-
line tools has enabled broader student interaction, facilitating code 
sharing and collaborative problem-solving. Despite these advance-
ments, our preliminary interviews and previous research indicate 
that instructors struggle to assess student engagement during peer 
discussions, understand the topics being discussed, or ensure the 
relevance of the discussions to the exercise at hand. This becomes 
especially challenging in introductory programming classes, often 
comprising hundreds of students. Therefore, our research ques-
tion arose: how can we aid instructors in efectively monitoring 
PI, specifcally peer discussion activities, for coding exercises in 
large-scale programming lectures? 

This poster presents our ongoing work aimed at enhancing the 
efcacy of PI in programming lectures. We introduce a prototype, 
VizPI1, an interactive web tool that enables instructors to monitor 
numerous group discussions in real-time. With VizPI, instructors 
can create a coding exercise for students, while the tool monitors 
the submission rate and displays it to the instructor. Students are 
then grouped in pairs or trios, with a balanced expertise within 
each group. VizPI provides real-time visualization of each group’s 
discussion progress and success rate. This allows instructors not 
only to gauge the overall progress of group discussions but also to 
discern common discussion points, prevalent mistakes, and other 
salient features of student discourse. As a result, instructors can 
easily highlight important codes or issues that VizPI has identifed, 
creating a lecture that is considerably more adaptive to ongoing 
discussions. This innovative tool aids instructors in providing per-
sonalized, scalable feedback within the lecture setting. 

2 INFORMAL NEEDFINDING INTERVIEWS 
We conducted informal interviews with three instructors from our 
institution who teach introductory programming classes, gathering 
insights about their needs concerning peer instruction. These in-
sights have signifcantly informed our system design rationale: (1) 
Instructors expressed a desire to comprehend and discuss overarch-
ing group performance metrics, particularly the primary mental, 
coding, and logical challenges that students discuss. (2) They also 
emphasized the utility of being able to present exemplary student 
responses on a large screen for class-wide discussion. This approach 
inverts the traditional pedagogical model, wherein instructors pri-
marily share examples. (3) In addition, instructors highlighted the 
potential for innovation when our tool is integrated with a well-
designed pedagogical strategy for classroom use. Such a blend of 

1Short for visualization for peer instructions. 

https://doi.org/10.1145/3586182.3616632
https://doi.org/10.1145/3586182.3616632
https://doi.org/10.1145/3586182.3616632
mailto:xiaohangtang,xic}@vt.edu
mailto:ych@vt.edu
mailto:c6wong@ucsd.edu


UIST ’23 Adjunct, October 29–November 01, 2023, San Francisco, CA, USA Tang et al. 

Figure 1: Instructor (in Green) and Student view (in Blue) of VizPI. A) Instructor can change between Task panel and Group/Class 
Performance, B) Keywords from group conversations, C) Common code issues found among groups, D) Class pass rate on 
instructor defned unit tests, E) Group list showing pass rate and conversation relevance, search bar flters relevant results, F) 
Group chat of assigned discussion group, G) Code editor activity of associated messages and code output window, H) Instructor 
control on turning of chat, I) Instructor control on grouping students, J) Instructor control on replaying group discussion. 

technology and teaching methodology could signifcantly enhance 
the efectiveness of peer instruction in large-scale programming 
lectures. 

3 SYSTEM OVERVIEW 
VizPI is designed such that instructors can carry out peer instruc-
tion using in class programming exercises. Our interface has two 
views (Instructors view and Student view). Each view is separated 
into the Top Bar (Figure 1A,B,C,D), Group List (Figure 1E), Chat 
(Figure 1F) and Code Editor (Figure 1G). We will walk through how 
our interface aids each step of the peer instruction process. 
3.1. Instructors propose a programming task for students: 
In VizPI, instructors will frstly input the programming task de-
scription and unit tests to test against the student solution in the 
Task tab (Figure 1A). In real time, students are able to view task 
description (Figure 1A) and start coding. During this phase, instruc-
tors can turn of chatting functions (Figure 1H) such that students 
are able to work on their code individually. As students write and 
run their code in the code editor, instructors are able to view the 
unit test pass rate of the whole class and the pass rate of individual 
unit tests (Figure 1D). 
3.2. Instructors review students’ performance and open up 
group discussion: 
Instructors are able to share initial unit test results and give pre-
liminary feedback after students attempt the programming task. 
Afterwards, instructors can group students into groups (Figure 1I) 
and turn on chatting functions (Figure 1H). For the remaining dis-
cussion time, students are able to discuss with their peers and work 
on the programming assignments together. During this time period, 
instructors are allowed to observe student performance in 2 ways: 
(1) Class/Group Performance and (2) Individual Performance. 
Class/Group Performance: This section is divided into 3 main 
components: Keywords, Code Issues and Pass Rate. Keywords sum-
marizes the key themes of discussion based on the analysis of 
conversation messages across all groups (Figure 1B), and they can 

be used to flter groups that mentioned the corresponding keyword. 
Code Issues demonstrate common errors found in student submis-
sion. Each error is presented in a form of a card, where instructors 
can view the percentage of students making the mistake, as well as 
the summary of the error made by these students (Figure 1C). These 
components can also be viewed on a group level, which summarizes 
information based on each group instead of the whole class. 

The group panel displays information for instructors to assess 
group performances in rings (Figure 1E). The outer light green ring 
denotes the pass rate of each group against all the unit tests, and the 
inner dark blue ring measures the conversation relevance of each 
group’s messages. The closer the conversation is to the solution, the 
higher the conversation rate is. Instructors can use these metrics to 
evaluate how close each group is in reaching the correct answer. 
Individual Performance: When a student sends a message in 
their group chat, the associated code written at that moment will 
be captured and stored. By selecting each chat message, instructors 
are able to view each students’ code editor activity at the time 
each message is sent (Figure 1F,G). This gives instructors a better 
understanding of student’s progress as they can trace through the 
student’s coding progress to understand their approach to tackling 
the problem. 

4 FUTURE WORK 
We will continue our system implementation for features that we 
listed below and also conduct system evaluation to examine the 
efectiveness of this tool. (1) Advanced Grouping: We’ll develop 
a refned algorithm that uses students’ pass rates and personality 
traits for improved group formation. (2) Enhanced NLP Models: 
We plan to use better Natural Language Processing (NLP) models to 
highlight key discussion points, incorporating instructors’ feedback. 
(3) Customizable Feedback: We aim to ofer instructors the ability 
to provide feedback at varying levels during peer instruction. 

In conclusion, our interactive web tool, VizPI, has the poten-
tial to transform the instructional approach by enabling real-time 



VizPI: A Real-Time Visualization Tool for Enhancing 
Peer Instruction in Large-Scale Programming Lectures UIST ’23 Adjunct, October 29–November 01, 2023, San Francisco, CA, USA 

monitoring of numerous group discussions, thereby empowering 
instructors to provide personalized and scalable feedback within 
the lecture setting. 

REFERENCES 
[1] Catherine H Crouch and Eric Mazur. 2001. Peer instruction: Ten years of experience 

and results. American journal of physics 69, 9 (2001), 970–977. 
[2] Pranita Deshpande, Cynthia B Lee, and Irfan Ahmed. 2019. Evaluation of peer 

instruction for cybersecurity education. In Proceedings of the 50th ACM Technical 
Symposium on Computer Science Education. 720–725. 

[3] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for 
computer programming. In Proceedings of the 28th Annual ACM Symposium on 

User Interface Software & Technology. 599–608. 
[4] Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert 

McCartney, Daniel Zingaro, and Beth Simon. 2016. A multi-institutional study 
of peer instruction in introductory computing. In Proceedings of the 47th ACM 
Technical Symposium on Computing Science Education. 358–363. 

[5] April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve 
Oney. 2021. PuzzleMe: Leveraging Peer Assessment for In-Class Programming 
Exercises. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 
(2021), 1–24. 

[6] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Misun-
derstandings By Visualizing Students’ Coding Progress. In Proceedings of the 2023 
CHI Conference on Human Factors in Computing Systems. 1–16. 


	Abstract
	1 Introduction
	2 Informal Needfinding Interviews
	3 System Overview
	4 Future Work
	References



